Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)
\(Q=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)...\left(\frac{99}{100}\right)\)
\(Q=\frac{1}{100}\)
\(P=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(P=\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)\left(\frac{3.5}{3.5}+\frac{1}{3.5}\right)...\left(\frac{99.101}{99.101}+\frac{1}{99.101}\right)\)
\(P=\left(\frac{4}{1.3}\right)\left(\frac{9}{2.4}\right)\left(\frac{16}{3.5}\right)...\left(\frac{10000}{99.101}\right)\)
\(P=\left(\frac{2^2}{1.3}\right)\left(\frac{3^2}{2.4}\right)\left(\frac{4^2}{3.5}\right)...\left(\frac{100^2}{99.101}\right)\)
Bạn tự tách ra rồi bạn sẽ ra kết quả như ở dưới
\(P=\frac{201}{100}\)
a, Đề sai hả bạn ??
b, \(\dfrac{\left(1,16-x\right).5,25}{\left(10\dfrac{5}{9}-7\dfrac{1}{4}\right).2\dfrac{2}{17}}=75\%\)
\(\dfrac{\left(1,16-x\right).5,25}{\left(\dfrac{95}{9}-\dfrac{29}{4}\right).\dfrac{36}{17}}=\dfrac{75}{100}\)
\(\dfrac{\left(1,16-x\right).5,25}{\left(\dfrac{380}{36}-\dfrac{261}{36}\right).\dfrac{36}{17}}=\dfrac{3}{4}\)
\(\dfrac{\left(1,16-x\right).5,25}{\dfrac{119}{36}.\dfrac{36}{17}}=\dfrac{3}{4}\)
\(\dfrac{\left(1,16-x\right).5,25}{7}=\dfrac{3}{4}\)
=> \(\left[\left(1,16-x\right).5,25\right].4=3.7\)
\(\left[\left(1,16-x\right).5,25\right].4=21\)
( 1,16 - x ) . 5,25 = 21/4
1,16 - x = 21/4 : 5,25
1,16 - x = 1
x = 1,16 - 1
x = 0,16
Vậy x = 0,16
c, \(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{19.21}\right).420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{19.21}\right).420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{21}\right).420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(\dfrac{1}{2}.\dfrac{20}{21}.420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(200-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(0,4.\left(7,5-2,5x\right):0,25=200-212\)
\(0,4.\left(7,5-2,5x\right):0,25=-12\)
0,4 . ( 7,5 - 2,5x ) = -12 . 0,25
0,4 . ( 7,5 - 2,5x ) = -3
7,5 - 2,5x = -3 :0,4
7,5 - 2,5x = -7,5
2,5x = 7,5-(-7,5)
2,5x = 15
x = 6
Vậy x = 6
Vậy x = 51
câu a chắc mk nhìn ko rõ vì mk cận mà ko đeo kính, ghi sai đề
Xinloi, t ghi thiếu đề
\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)
\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)
Vì \(\left|x+\frac{1}{1.3}\right|\ge0\forall x\)
\(\left|x+\frac{1}{3.5}\right|\ge0\forall x\)
................
\(\left|x+\frac{1}{97.99}\right|\ge0\forall x\)
(VT: Vế trái; VP: Vế phải)
\(\Rightarrow VT\ge0\Rightarrow VP=50x\ge0\)mà \(50>0\)
\(\Rightarrow x>0\)
\(\Rightarrow x+\frac{1}{1.3}>0\forall x\)
..............
\(x+\frac{1}{97.99}>0\forall x\)(1)
(1) \(\Leftrightarrow x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)
\(\Leftrightarrow49x+\left(\frac{1}{1.3}+...+\frac{1}{97.99}\right)=50x\)
\(\Leftrightarrow50x-49x=\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{97.99}\right)\)
\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(\Leftrightarrow x=\frac{1}{2}\cdot\frac{98}{99}=\frac{49}{99}\)
Vậy....
P/s: Làm bừa :) Ko chắc đúng nhé
Có \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..........\)\(\left(1+\frac{1}{2014.2016}\right)\)
=\(\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)....\left(\frac{2014.2016}{2014.2016}+\frac{1}{2014.2016}\right)\)
=\(\left(\frac{2^2-1}{1.3}+\frac{1}{2.4}\right)\left(\frac{3^2-1}{2.4}+\frac{1}{2.4}\right)......\left(\frac{2015^2-1}{2014.2016}+\frac{1}{2014.2016}\right)\)
=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}......\frac{2015.2015}{2014.2016}\)
=\(\frac{2.2.3.3.....2015.2015}{1.3.2.4....2014.2015}\)
=\(\frac{\left(2.3...2015\right).\left(2.3.....2015\right)}{\left(1.2....2014\right).\left(3.4.....2016\right)}=\frac{2015.2}{2016}=\frac{4030}{2016}\)