K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 \(⋮\) 1 và 3.

p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 \(⋮\)1 và 5.

b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 \(⋮\) 1 và 11

p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 \(⋮\) 1 và 19

24 tháng 6 2019

a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 ⋮ 1 và 3.

p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 ⋮ 1 và 5.

b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 ⋮ 1 và 11

p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 ⋮ 1 và 19

30 tháng 10 2015

a)*Xét p=2=>p+2=4 là hợp số(loại)

*Xét p=3=>p+2=5

                   p+4=7(thoả mãn)

*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2

-Với p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số(loại)

-Với p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(loại)

Vậy p=3 thoả mãn đề bài.

b)*Xét p=2=>p+10=12 là hợp số(loại)

*Xét p=3=>p+10=13

                   p+14=17(thoả mãn)

*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2

-Với p=3k+1=>p+14=3k+1+14=3k+15=3.(k+5) là hợp số(loại)

-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)

Vậy p=3 thoả mãn đề bài.

18 tháng 10 2016

a. A=(p;p+2;p+4) 

p=2=>A=(2,4,6)loai vay P phai le

Tập hợp 3 số lẻ liên tiếp  phải có số chia hết cho 3

Vậy P =3  

A=(3,5,7) 

b.A=(p,p+10,p+14); p=2

P=1=> A=(3,13,17) nhan

P>3  (p nguyen to do vay p co dang  p=3n+1 &3n+2)

*TH1; P co dang p=3n+1

P+10=3n+11

P+14=3n+15 chia het cho 3=> loai P=3n+1

*TH2; P co dang p=3n+2

P+10=3n+12 chia het cho 3 => loai p=3n+2

vay P=3 duy nhat

c. A=(p,p+2,p+6,p+8)

p=2 loai

p=3=> A=(3.5,9,11) loai

p=5=>A=(5,7,11,13) nhan

P=11A=(11,13,17,19) nhan

xet P>11

tuong tu (b) xe ra hoi dai 

de xem co cach ngan hon ko

8 tháng 11 2014

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

25 tháng 10 2015

bn chỉ cần dặt p= 3k+1; 3k+2;3k 

a: p=3

b: p=3

26 tháng 7 2023

Bài 1 :

a) \(123456789+729=\text{123457518}⋮2\)

⇒ Số trên là hợp số

b)\(5.7.8.9.11-132=\text{27588}⋮2\)

⇒ Số trên là hợp số

Bài 2 :

a) \(P+2\&P+4\) ;à số nguyên tố

\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)

\(\Rightarrow P=-3\)

Câu b tương tự

 

26 tháng 7 2023

a,123456789+729=123457518(hợp số)

b,5x7x8x9x11-132=27588(hợp số)

Bài 2,

a,Nếu P=2=>p+2=4 và p+4=6 (loại)

Nếu P=3=>p+2=5 và p+4=7(t/m)

P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)

Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)

Nếu p=3k+2=>p+4=3k+6⋮3(loại)

Vậy p=3 thỏa mãn đề bài

b,Nếu p=2=>p+10=12 và p+14=16(loại)

Nếu p=3=>p+10=13 và p+14=17(t/m)

Nếu p >3=>p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=>p+14=3k+15⋮3(loại)

Nếu p=3k+2=>p+10=3k+12⋮3(loại)

Vậy p=3 thỏa mãn đề bài.

23 tháng 9 2018

a) Xét:

\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)

+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so 

Vay p=2

b) Xét:'

\(+p=2\Rightarrow p+8=10\left(ktm\right)\)

\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)

\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)

\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)

\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)

Vay p=3
 

23 tháng 9 2018

a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.

Xét p = 2 => 3.2 + 5 = 11 (nhận)

b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.

=> p = 3 

1 tháng 11 2015

1.

a) p = 1

b) p = 1 

c) p = 1 

3.

là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489

1 tháng 11 2015

đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.

14 tháng 1 2018

a. p có 3 dạng : p ; p+1 ; p+2

14 tháng 1 2018

a. Số p có một trong ba dạng : 3k , 3k+1 , 3k+2   (k thuộc N*)

Nếu p = 3k thì p = 3 ( Vì p là số nguyên tố ) , khi đó p+2 = 5 , p+4 = 7 đều là số nguyên tố

Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ( loại )

Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số  ( loại )

Vậy p = 3