\(\frac{2n+1}{n^2-3}\)có giá trị là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

có số { 0;1 }

k mk nha ♥

Vì 7/2n-1 có giá trị là số nguyên 

=> 7 chia hết cho 2n-1

=> 2n-1 thuộc ước của 7 

Ư(7)={1;-1;7;-7}

Ta có bảng :

2n-1     1     -1    7      -7

2n        2     0     8      -6

n          1     0     4      -3

Vậy với n thuộc {-3;0;1;4} thì thỏa mãn đầu bài 

11 tháng 2 2020

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên

\(\Rightarrow\)12\(⋮\)3n-1

\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!

b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên 

\(\Rightarrow\)2n+3\(⋮\)7

\(\Rightarrow\)2n+3=7k  

\(\Rightarrow n=\frac{7k-3}{2}\)

30 tháng 3 2017

Số n là :

1 + 0 = 1

Đáp số : 1

2 tháng 10 2016

n = 1 và n =2

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

26 tháng 4 2017

\(\frac{2n-1}{3n-4}\)

=\(\frac{\left(5-3\right)n-\left(5-4\right)n}{3n-4}\)

\(\frac{5-3n-5n-4}{3n-4}\)

=\(\frac{5}{3n-4}-\frac{3n-4}{3n-4}\)

\(\Rightarrow\)3n - 4  thuộc Ư(5)

Ta có: Ư(5) = { -1;-5;1;5}

Do đó:

3n - 4 = -1

3n      = -1 + 4

3n      = 3

n        = 3 : 3

n        = 1

3n - 4 = -5

3n      = -5 + 4

3n      = -1

n        = -1 : 3

n        = rỗng

3n - 4 = 1

3n      = 1 + 4

3n      = 5

n        = 5 : 3

n        = rỗng

3n - 4 = 5

3n      = 5 + 4

3n      = 9

n        = 9 : 3

n        = 3

Vậy n = 1;3

26 tháng 4 2017

Để \(\frac{2n-1}{3n-4}\)nguyên thì \(2n-1⋮3n-4\)

\(\Leftrightarrow3\left(2n-1\right)⋮3n-4\)

\(\Leftrightarrow6n-3⋮3n-4\)

\(\Leftrightarrow6n-8+5⋮3n-4\)

\(\Leftrightarrow5⋮3n-4\)

\(\Rightarrow3n-4\inƯ\left(5\right)\)

Vậy ta có bảng sau:

3n - 41-15-5
nx13x
20 tháng 4 2021

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để A nguyên thì 1/n+3 nguyên

hay n + 3 thuộc Ư(1) = { 1 ; -1 ]

=> n thuộc { -2 ; -4 } thì A nguyên

28 tháng 5 2018

Ta có :

\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)

để A \(\in\)\(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)\(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)\(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }

Lập bảng ta có :

2n-31-12-23-36-6
n215/21/2309/2-3/2

vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }

28 tháng 5 2018

Ta có :  \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)

Để  \(A\in N\) thì  \(\frac{6}{2n-3}\in N\)

\(\Rightarrow6⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

2n-31-12-23-36-6
2n4251609-3
n212,50,5304,5-1,5

Vậy ...

22 tháng 4 2019

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2-\frac{1}{n+3}\)

Để A có giá trị là số nguyên 

=> 1 chia hết cho n + 3

=> \(n+3\inƯ\left(1\right)\)

=> \(n+3\in\left\{1;-1\right\}\)

=> \(n\in\left\{-2;-4\right\}\)

Vậy A có giá trị là số nguyên khi n = -2 hoặc n = -4

22 tháng 4 2019

để A nguyên \(\Rightarrow2n+5⋮n+3\)

\(\Rightarrow\left(2n+6\right)-1⋮n+3\)

\(\Rightarrow n+3\text{là}Ư_1\in\left\{\pm1\right\}\)

Ta có bảng sau
\(n+3\)1-1
\(n\)-2-4

      Vậy \(n\in\left\{-2;-4\right\}\)

10 tháng 5 2019

ĐỂ \(\frac{7}{2n-1}\) có gtri nguyên <=> 7 chia hết cho 2n-1

=>2n-1 thuộc tập hợp Ư(7)={7;1;-7;-1}

=>2n thuộc {8;2;-6;0}=>n thuộc {4;1;-3;0}