Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
\(\frac{n^2+4}{n+1}=\frac{\left(n^2+n\right)-\left(n+1\right)+5}{n+1}=\frac{n\left(n+1\right)-\left(n+1\right)+5}{n+1}=\frac{\left(n+1\right)\left(n-1\right)+5}{n+1}=n-1+\frac{5}{n+1}\)
=> \(\frac{n^2+4}{n+1}=n-1+\frac{5}{n+1}\)
=> Để phân số nguyên thì 5 phải chia hết cho n+1 => n+1=(-5,-1,1,5)
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
Phân số | -8 | -7 | 5 | 4 |
\(\frac{n^2+4}{n+1}=n-1+\frac{5}{n+1}\)
để phân số có giá trị nguyên thì \(5⋮n+1\)
\(\Leftrightarrow n+1\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
ta có : A=\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
để A thuộc Z => 3+ \(\frac{7}{n-1}\)phải thuộc Z => \(\frac{7}{n-1}\in Z\)hay n-1 thuộc ước của 7
bạn tự làm nốt nhé
a) Để n+4/n có giá trị nguyên thì n+4\(⋮\)n
Vì n chia hết cho n nên 4 chia hết cho n
-->n thuộc Ư(4)={1;2;4}
Vậy n thuộc {1;2;4}
c) Để 6/n-1 có giá trị nguyên thì 6 chia hết cho n-1
-->n-1 thuộc Ư(6)={1;2;3;6}
+,n-1=1 \(\Rightarrow\)n=2
+,n-1=2 \(\Rightarrow\)n=3
+,n-1=3 \(\Rightarrow\)n=4
+,n-1=6 \(\Rightarrow\)n=7
Vậy n thuộc {2;3;4;7}
Ta có : 3n+2 chia n-1 bằng 3 dư 5 .Để A là số nguyên thì n-1 phải là ước của 5 bao gồm : 1;-1;5;-5
n-1=1=>n=2
n-1=-1 =>n=0
n-1=5=>n=6
n-1=-5=>n=-4
Vậy n thuộc tập hợp bao gồm : -4;0;2;6
n mũ 2 hay là m nhân 2 vậy ạ?
Vì \(n\inℤ\) nên để phân số \(\frac{n^2+4}{n+1}\) có giá trị nguyên thì: \(n^2+4⋮n+1\)
\(\Rightarrow\left(n^2-1\right)+5⋮n+1 \)
\(\Rightarrow5⋮n+1\) ( vì \(n^2-1=\left(n-1\right)\left(n+1\right)⋮n+1\))
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-6;-2;0;4\right\}\)