Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 4/2n là số nguyên thi 4\(⋮\) 2n
=>2n\(\in\) Ư (4)
2n=1
n=1/2 loại
2n=2
n=2/2=1 chọn
2n=4
n=4/2=2 chọn
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Để A là số nguyên thì 2n+8+2013 chia hết cho n+4
=>\(n+4\in\left\{\text{1;3;11;33;61;183;671;2013};-1;-3;-11;-33;-61;-183;-671;-2013\right\}\)
=>\(n\in\left\{-3;-1;7;29;57;179;667;2009;-5;-7;-15;-37;-65;-187;-675;-2017\right\}\)
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
a) \(A=\frac{3n-11}{n-4}=\frac{3.\left(n-4\right)+1}{n-4}=3+\frac{1}{n-4}\)
Để A có giá trị là số nguyên \(\Rightarrow\frac{1}{n-4}\in Z\Rightarrow n-4\inƯ\left(1\right)\)
\(\Rightarrow\orbr{\begin{cases}n-4=1\\n-4=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=5\\n=3\end{cases}}}\)
Vậy n=3; n=5
b) \(B=\frac{4n+1}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}=2+\frac{3}{2n-1}\)
Để B có giá trị là số nguyên \(\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)
Do đó ta có bảng:
2n-1 | -3 | -1 | 1 | 3 |
n | -1 | 0 | 1 | 2 |
Vậy n=-1; n=0; n=1; n=2
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
\(\frac{2n+3}{n+2}=\frac{2n+4-1}{n+2}=2-\frac{1}{n+2}\inℤ\)
mà \(n\inℤ\Rightarrow n+2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow n\in\left\{-3;-1\right\}\).
D nguyên <=> \(\frac{n+11}{2n-4}\) nguyên
<=> \(n+11⋮2n-4\)
=> \(2\left(n+11\right)⋮2n-4\)
=> \(2n+22⋮2n-4\)
=> \(\left(2n-4\right)+4+22⋮2n-4\)
=> \(\left(2n-4\right)+26⋮2n-4\)
\(2n-4⋮2n-4\)
=> \(26⋮2n-4\)
=> \(2n-4\inƯ\left(26\right)\)
đến đây dễ r`, bn tự lm tiếp đi !