K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 9 2018

Lời giải:

Vì hệ số bậc cao nhất là $1$ và hệ số tự do là $4$ nên để đa thức đã cho là một số chính phương thì ta có thể viết nó dưới dạng:

\(P(x)=x^4+mx^3+29x^2+nx+4=(x^2+ax+2)^2\)

\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+a^2x^2+4+2ax^3+4x^2+4ax\)

\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+2ax^3+x^2(a^2+4)+4ax+4\)

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} m=2a\\ 29=a^2+4\\ n=4a\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=2a\\ a^2=25\rightarrow a=\pm 5\\ n=4a\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} \left\{\begin{matrix} m=10\\ n=20\end{matrix}\right.\\ \left\{\begin{matrix} m=-10\\ n=-20\end{matrix}\right.\end{matrix}\right.\)

27 tháng 9 2018

Giải thích kĩ hơn dùm em tại sao lại có

P(x)=(x^2+ax+2)^2

5 tháng 6 2017

đầu tiên tính pen -ta >0 r suy ra điều kiện

phần tính  \(x^3+x_2^3=1\)theo hằng đẳng thức.r bạn sẽ ra thôi. cố lên

5 tháng 6 2017

\(x_1^3+x_2^3=\left(x1+x2\right)\left(\left(x1+x2\right)^2-3xy\right)\)

Bạn thay x1.x2 và x1+x2 theo m vào là tìm đc m

~ Có thể mai sau tôi sẽ ko giàu có, ko mồm mép nhưng tôi sẽ cố gắng hết sức để có đc những thứ đó.~ 

Chung quy lại là CHÁN

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm. 

14 tháng 12 2015

 

 Đặt             \(x^4+mx^3+29x^2+nx+4=\left(x^2+ax+2\right)^2=x^4+a^2x^2+4+2ax^3+4ax^2+4ax\)

       \(=x^4+2ax^3+\left(a^2+4a\right)x^2+4ax+4\)

=>a2 +4a = 29 => a+2 =+- 5 => a =3 hoặc a =-7

=>n =4a = 

=> m =2a  =

31 tháng 7 2019

#)Giải : 

\(x^3-3x^2+x+2\)

\(=x^3-2x^2-x^2+2x-x+2\)

\(=x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-x-1\right)\)

Để \(x^3-3x^2+x+2\) là số chính phương \(\Leftrightarrow x-2=x^2-x-1\)

\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)

1 tháng 7 2017

Mẹo: Làm xuất hiện (xy-1)/xy

\(x^2+y^2=2x^2y^2\Leftrightarrow x^2+y^2-2xy=2xy\left(xy-1\right)\)

\(\Leftrightarrow\frac{xy-1}{xy}=\frac{x^2+y^2-2xy}{2x^2y^2}=\frac{1}{2}\left(\frac{1}{y^2}+\frac{1}{x^2}-\frac{2}{xy}\right)=\frac{1}{2}\left(\frac{1}{x}-\frac{1}{y}\right)^2\)

hm Đề sai ah