Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hđt: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)Ta có: \(x^3+y^3+3xyz=z^3\Leftrightarrow x^3+y^3+3xyz-z^3=0\Leftrightarrow\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)=0\)
Th1: \(x+y-z=0\Leftrightarrow x+y=z\Rightarrow z^3=\left(2x+2y\right)^2=4z^2\Leftrightarrow z=4\)(do z là số nguyen dương)
\(\Rightarrow x+y=4\)\(\Rightarrow\left(x,y\right)\in\left\{\left(1,3\right)\left(2,2\right)\left(3,1\right)\right\}\)
\(TH2:x^2+y^2+z^2-xy+xz+yz=0\Leftrightarrow\frac{\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2}{2}=0\)(loại vì x,y,z nguyên dương nên VT>0 )
Vậy...
(x+y)^3 - 3xy(x+y) + z^3 - 3xyz = 0
(x+y+z) ( (x+y)^2 +z^2 -z(x+y) -3xy) =0
(x+y+z) ( x^2+ 2xy+y^2 +z^2- zx-zy-3xy)=0
(x+y+z) ( x^2+y^2+z^2 -zx-zy -xy)=0
Suy ra x+y+z =0
x+y = -z
y+z = -x
x+z = -y
B = -16 + (-3) +2038 = 2019
Ta có: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\left(x,y,z\ne0\right)\)
+) x + y + z = 0 \(\Rightarrow B=\frac{-16z}{z}+\frac{-3x}{x}-\frac{-2038y}{y}\)
\(=-16-3+2038=2019\)
+) x = y = z \(\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}-\frac{2038.2y}{y}\)
\(=32+6-4076=-4038\)
Biến đổi tương đương giả thiết: \(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\) (xét hiệu 2 vế, cái đẳng thức này quen thuộc nên bạn tự biến đổi)
Do x, y, z dương nên x + y + z > 0. Do đó để đẳng thức trong giả thiết xảy ra thì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\). Thay y, z bởi x vào M ta được M = 3.
Mình nêu hướng làm thôi!
(*) \(x^3-y^3-z^3=3xyz\)\(\Leftrightarrow x^3-3xyz=\left(y+z\right)\left[\left(y+z\right)^2-3yz\right]\)
Thay \(y+z=\frac{1}{2}x^2\)(*) \(\Leftrightarrow x^3-3xyz=\frac{x^2}{2}\left(\frac{x^4}{4}-3yz\right)\)\(\Leftrightarrow\frac{x^6}{8}-x^3-\frac{3}{2}x^2yz+3xyz=0\)
\(\Leftrightarrow x^6-8x^3-12x^2yz+24xyz=0\)
\(\Leftrightarrow x^3\left(x^3-8\right)-12x\left(x-2\right)yz=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^4-12yz+2x^3+4x^2\right)=0\)
Với mọi \(y>0;z>0\)thì \(\left(y+z\right)^2\ge4yz\)thay \(x^2=2\left(y+z\right)\)\(\Rightarrow x^4\ge16yz\ge12yz\Rightarrow x^4-12yz\ge0\)
Với mọi x>0 thì \(x^4-12yz+2x^3+4x^2>0\)
Nên (*) \(\Leftrightarrow x\left(x-2\right)=0\)vì \(x>0\)nên \(x=2\)
Thay vào \(x^2=2\left(y+z\right)\)ta được \(y+z=2\)vì y;z nguyên dương nên \(y=1;z=1\)
Thay \(x=2;y=1;z=1\)ta thấy TMĐK đề bài nên nó là nghiệm duy nhất của bài toán.
bằng 1 nhé