K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2020

\(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=m\Rightarrow x-y\sqrt{2019}=my-mz\sqrt{2019}\)

\(\Leftrightarrow\left(mz-y\right)\sqrt{2019}=my-x\)

\(\Rightarrow\left\{{}\begin{matrix}mz-y=0\\my-x=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{y}{z}\\m=\frac{x}{y}\end{matrix}\right.\) \(\Rightarrow\frac{x}{y}=\frac{y}{z}\Rightarrow y^2=zx\)

\(\Rightarrow x^2+y^2+z^2=x^2+z^2+2zx-2zx+y^2\)

\(=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2=\left(x+y+z\right)\left(x+z-y\right)\)

Do \(x^2+y^2+z^2\) là SNT \(\Rightarrow x+z-y=1\Rightarrow y=x+z-1\)

Mặt khác \(y^2=zx\le\frac{\left(x+z\right)^2}{4}\Rightarrow y\le\frac{x+z}{2}\)

\(\Rightarrow x+z-1\le\frac{x+z}{2}\Rightarrow x+z\le2\)

\(\Rightarrow x=z=1\Rightarrow y=1\)

Vậy có duy nhất \(\left(x;y;z\right)=\left(1;1;1\right)\) thỏa mãn

24 tháng 5 2019

Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)

\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)

Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)

                                    \(=\left(x-y+z\right)\left(x+y+z\right)\)

Vì   \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa) 

Kết luận...

18 tháng 10 2020

ảnh đẹp

18 tháng 6 2019

Vì là số hữu tỉ nên \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{a}{b}\left(a;b\inℕ^∗\right)\)

\(\Leftrightarrow bx+by\sqrt{2013}=ay+az\sqrt{2013}\)

\(\Leftrightarrow az\sqrt{2013}-by\sqrt{2013}=bx-ay\)

\(\Leftrightarrow\sqrt{2013}\left(az-by\right)=bx-ay\)

Vì VP là số hữu tỉ nên VT là số hữu tỉ

Mà \(\sqrt{2013}\)là số vô tỉ

Nên \(bx-ay=az-by=0\)

\(\Rightarrow\hept{\begin{cases}bx=ay\\az=by\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{a}{b}\\\frac{y}{z}=\frac{a}{b}\end{cases}}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow xz=y^2\)

Ta có \(x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z\right)^2-y^2=\left(x-y+z\right)\left(x+y+z\right)\)

Mà \(x^2+y^2+z^2\)là số nguyên tố nên

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)(Do \(x-y+z< x+y+z\))

Vì x ; y ; z nguyên dương nên \(x;y;z\ge1\Rightarrow\hept{\begin{cases}x^2\ge x\\y^2\ge y\\z^2\ge z\end{cases}}\)

                                                                    \(\Rightarrow x^2+y^2+z^2\ge x+y+z\)

Dấu "=" xảy ra <=> x = y = z = 1 (thỏa mãn)

18 tháng 6 2019

Theo đề ra ta có: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{m}{n}\left(m,n\in Z;\left(m,n\right)=1\right).\)

\(\Rightarrow nx+ny\sqrt{2013}=my+mz\sqrt{2013}\Leftrightarrow nx-my=\sqrt{2013}\left(mz-ny\right).\)

\(\Rightarrow\hept{\begin{cases}nx-my=0\\mz-ny=0\end{cases}}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2\)(vì x,y,n,m đều là các số nguyên )

Khi đó: \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)

                                      \(=\left(x-y+z\right)\left(x+y+z\right)\)

Dễ thấy  \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên:

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)

Thử lại ta thấy x=y=z=1 thỏa mãn .

25 tháng 7 2016

giúp mình nhé