Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Với \(y^2=9\)thì \(x^2=25\Rightarrow x=\pm5\left(TM\right)\)\(2x^2+3y^2=77\)
\(\Leftrightarrow2x^2+3\left(y^2-1\right)=74\)
Vì 74 chẵn, \(2x^2\)chẵn nên \(3\left(y^2-1\right)\)chẵn
\(\Leftrightarrow y^2-1\)chẵn\(\Leftrightarrow y^2\)lẻ
Mà \(3y^2\le77\Rightarrow y^2\le25\)\(\Rightarrow y^2\in\left\{1;9;25\right\}\)
* Với \(y^2=1\)thì \(x^2=37\left(L\right)\)
* Với \(y^2=9\)thì \(x^2=25\Rightarrow x=\pm5\left(TM\right)\)
* Với \(y^2=25\)thì \(x^2=1\Rightarrow x=\pm1\left(TM\right)\)
Lập bảng:
\(x\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) | \(5\) | \(-5\) |
\(y\) | \(5\) | \(-5\) | \(-5\) | \(5\) | \(3\) | \(-3\) | \(-3\) | \(3\) |
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7
đặt x = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7
Vậy ...