K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

a) Ta có: |a| \(\ge\) 0 với mọi a

|b| \(\ge\) 0 với mọi b

Mà |a| + |b| = 0

=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Vậy a = 0; b = 0

b) Ta có:

|a + 5| \(\ge\) 0 với mọi a

|b - 2| \(\ge\) 0 với mọi b

Mà |a + 5| + |b - 2| = 0

=> \(\left\{{}\begin{matrix}a+5=0\\b-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=2\end{matrix}\right.\)

Vậy a = -5; b = 2

19 tháng 5 2017

\(\left|a\right|\ge0;\left|b\right|\ge0\)

\(\Rightarrow\left|a\right|+\left|b\right|\ge0\)

Mà : \(\left|a\right|+\left|b\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|a\right|=0\\\left|b\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Vậy a = 0 , b = 0

b, Vì \(\left|a+5\right|\ge0;\left|b-2\right|\ge0\)

\(\Rightarrow\left|a+5\right|+\left|b-2\right|\ge0\)

Mà : \(\left|a+5\right|+\left|b-2\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|a+5\right|=0\\\left|b-2\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+5=0\\b-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-5\\b=2\end{matrix}\right.\)

Vậy a = -5 ; b = 2

20 tháng 11 2016

1. a=b=0

2. a=0=> b=+-2

a=+-1=> b=+-1

b=0=> a=+-2

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
16 tháng 2 2019

Lí luận chung cho cả 4 câu :

Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau 

a) Dễ thấy \(x-2>x-7\)

\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)

b) tương tự

c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)

\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)

Tự giải nốt nha bạn mình bận rồi 

20 tháng 5 2017

a) Ta có \(x+4=(x+1)+3\)

nên \((x+4)\) \(⋮\left(x+1\right)\) khi \(3⋮\left(x+1\right)\) , tức là \(x+1\) là ước của 3

Vì Ư(3) = { \(-1;1;-3;3\) }

Ta có bảng

\(x+1\) \(-1\) \(1\) \(-3\) \(3\)
\(x\) \(-2\) \(0\) \(-4\) \(2\)

b) Ta có : \(4x+3=4(x-2)+11\)

nên \(\left(4x+3\right)⋮\left(x-2\right)\) khi \(11⋮\left(x-2\right)\) , tức là \((x-2) \) là ước của 11

( Làm tương tự thôi phần a) )

\(\Rightarrow x\in\left\{-9;1;3;13\right\}\)

2 tháng 6 2016

bài 1 pahafn a với phần b y hệt nhau

11 tháng 4 2017

Câu trắc nghiệm rất hay!

24 tháng 3 2018

Do a, b là các số tự nhiên nên 100a + 3b + 1 và 2a + 10a + b cũng là các số tự nhiên.

Ta có 225 = 32.52 nên \(Ư\left(225\right)=\left\{1;3;5;9;15;25;45;75;225\right\}\)

Nếu a = 0 thì ta có (3b + 1)(1 + b) = 225 

Do 1 + b < 3b + 1 nên ta có bảng:

1 + b135915
b024814
1 + 3b410162543
 LLLTML

Vậy ta có a = 0, b = 8.

Với a khác 0, ta có 100a > 100. Vậy thì 100a+ 3b + 1 = 225 hay a = 1 hoặc a = 2

Với a = 1, ta có: 12 + b = 1 (L)

Với a = 2, ta có: 24 + b = 1 (L)

Vậy tóm lại ta tìm được a = 0, b = 8.

a) Xác định các điểm –a, -b trên trục số:

Giải bài 107 trang 98 SGK Toán 6 Tập 1 | Giải toán lớp 6

b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:

Giải bài 107 trang 98 SGK Toán 6 Tập 1 | Giải toán lớp 6

c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:

a ở bên trái trục số => a là số nguyên âm nên a < 0.

Do đó: -a = |a| = |a| > 0.

b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0-b < 0.

16 tháng 4 2017

Bài giải:

a) Xác định các điểm –a, -b trên trục số:

Giải bài 107 trang 98 SGK Toán 6 Tập 1 | Giải toán lớp 6

b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:

Giải bài 107 trang 98 SGK Toán 6 Tập 1 | Giải toán lớp 6

c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:

a ở bên trái trục số => a là số nguyên âm nên a < 0.

Do đó: -a = |a| = |a| > 0.

b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0-b < 0.

\(5\left(x+4\right)-3\left(x-2\right)=x\)

\(\Leftrightarrow5x+20-3x+6=x\)

\(\Leftrightarrow2x+26=x\)

\(\Leftrightarrow2x-x=-26\)

\(\Leftrightarrow x=-26\)

\(\left(x-3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=-1\Rightarrow\varnothing\end{cases}\Leftrightarrow x=3}\)