Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Chibi Anime - Toán lớp 6 - Học toán với OnlineMath
\(1)\dfrac{1}{5}+\dfrac{2}{30}+\dfrac{121}{156}\le x\le\dfrac{1}{2}+\dfrac{156}{72}+\dfrac{1}{3}\)
\(\dfrac{156}{780}+\dfrac{26}{780}+\dfrac{605}{780}\le x\le\dfrac{3}{6}+\dfrac{13}{6}+\dfrac{2}{6}\)
\(\dfrac{787}{780}\le x\le2\)
\(\Rightarrow x\in\left\{2\right\}\)
Câu 2:
\(N=\dfrac{2a+9+5a+17-3a-4a-23}{a+3}=\dfrac{3}{a+3}\)
Để N là số tự nhiên thì \(\left\{{}\begin{matrix}a>-3\\a+3\in\left\{1;-1;3;-3\right\}\end{matrix}\right.\Leftrightarrow a\in\left\{-2;0\right\}\)
Ta có \(M=\frac{2a+8}{5}+\frac{-a-7}{5}=\frac{2a+8-a-7}{5}=\frac{a+1}{5}\)
Để \(M\inℤ\Leftrightarrow\frac{a+1}{5}\inℤ\Leftrightarrow a+1⋮5\Leftrightarrow a+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
a+1 | 1 | -1 | 5 | -5 |
a | 0 | -2 | 4 | -6 |
Vậy \(a\in\left\{0;-2;4;-6\right\}\)
a; 4a + 3 và 2a + 3
Gọi ƯCLN(4a + 3; 2a + 3) = d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}4a+3⋮d\\2a+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+3-4a-6⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\\left(4a-4a\right)+\left(2-6\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4⋮d\end{matrix}\right.\) ⇒ d \(\in\) Ư(4) = {1; 2; 4}
Nếu d = 2 ⇒ 4a + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lý)
Nếu d = 4 ⇒ 4a + 3 ⋮ 4 ⇒ 3 ⋮ 4 (vô lý)
Vậy d = 1 ⇒ (4a + 3; 2a + 3) = 1
Hay 4a + 3 và 2a + 3 là hai số nguyên tố cùng nhau với mọi giá trị của a.