K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Từ \(3a=4b=6c\Rightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{1}{6}}\)\(\Rightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{2b}{\dfrac{1}{2}}=\dfrac{c}{\dfrac{1}{6}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{2b}{\dfrac{1}{2}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{2b-a+c}{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{6}}=\dfrac{10}{\dfrac{1}{3}}=30\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{\dfrac{1}{3}}=30\Rightarrow a=30\cdot\dfrac{1}{3}=10\\\dfrac{2b}{\dfrac{1}{2}}=30\Rightarrow b=\dfrac{30\cdot\dfrac{1}{2}}{2}=\dfrac{15}{2}\\\dfrac{c}{\dfrac{1}{6}}=30\Rightarrow c=30\cdot\dfrac{1}{6}=5\end{matrix}\right.\)

3 tháng 8 2017

Ta có:

3a = 4b = 6c \(\Rightarrow\) \(\dfrac{3a}{12}=\dfrac{4b}{12}=\dfrac{6c}{12}\)

\(\Rightarrow\) \(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}\)

\(\Rightarrow\) \(\dfrac{a}{4}=\dfrac{2b}{6}=\dfrac{c}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{4}=\dfrac{2b}{6}=\dfrac{c}{2}=\dfrac{2b-a+c}{6-4+2}=\dfrac{10}{4}=2,5\)

Suy ra:

\(\dfrac{a}{4}=2,5\Rightarrow\)a = 10

\(\dfrac{2b}{6}=2,5\Rightarrow2b=15\Rightarrow b=\dfrac{15}{2}=7,5\)

\(\dfrac{c}{2}=2,5\Rightarrow c=5\)

Vậy a = 10 ; b = 7,5 ; c = 5

10 tháng 12 2016

bn dùng pp thế hoặc dẫy tỉ số bằng nhau gì cx đc

Theo bài ra ta cs

\(3a=4b=6c\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)

và \(2b-a+c=10\)

ADTC dãy tỉ số bằng nhau ta cs

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{2b-a+c}{2.\frac{1}{4}-\frac{1}{3}+\frac{1}{6}}=\frac{10}{\frac{1}{3}}=30\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{\frac{1}{3}}=30\\\frac{b}{\frac{1}{4}}=30\\\frac{c}{\frac{1}{6}}=30\end{cases}\Rightarrow\hept{\begin{cases}a-10\\b=\frac{15}{2}\\c=5\end{cases}}}\)

16 tháng 4 2019

Thiếu đề <3            

26 tháng 5 2021

a/ \(3a=2b;4b=3c\)

=> \(6a=4b=3c\)

=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{2+12-20}=\dfrac{-30}{-6}=5\)

=> \(\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)

=> B

26 tháng 5 2021

B

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{5}=\dfrac{c}{4}\end{matrix}\right.\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-56}{7}=-8\)

Do đó: a=-80; b=-120; c=-96

3 tháng 8 2020

\(a=\frac{5}{3}b\)\(c=\frac{5}{6}b\)

\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)

\(\Leftrightarrow\frac{-5}{6}b=10\)

\(\Leftrightarrow b=-12\)

b, Tương tự

3 tháng 8 2020

Bài làm:

a) \(3a=5b=6c\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)

b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)

và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)

15 tháng 4 2018

Ta có :

\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\left(1\right)\)

\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a}{-10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)

+)\(\frac{a}{10}=4\Rightarrow a=40\)

+)\(\frac{b}{15}=4\Rightarrow b=60\)

+)\(\frac{c}{12}=4\Rightarrow c=48\)

Vậy a = 40; b=60; c=48

11 tháng 8 2016

Ta có: 3a=2b=\(\frac{a}{2}=\frac{b}{3}\)và 4b=5c=\(\frac{b}{5}=\frac{c}{4}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{52}{13}=4\)

\(\frac{a}{10}=4\Rightarrow a=10.4=40\)

\(\frac{b}{15}=4\Rightarrow b=15.4=60\)

\(\frac{c}{12}=4\Rightarrow c=12.4=48\)

12 tháng 10 2016

a = 40 b = 60 c = 48

10 tháng 8 2016

Có: \(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)

      \(4b=5c\Rightarrow\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)

=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)

=>\(\frac{a}{10}=4\Rightarrow a=40\)

     \(\frac{b}{15}=4\Rightarrow b=60\)

     \(\frac{c}{12}=4\Rightarrow c=48\)

10 tháng 8 2016

ta có : \(\begin{cases}3a=2b\\4b=5c\end{cases}\)<=>\(\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\)<=>\(\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\)

=->\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

=> \(\frac{-a-b+c}{-10-15+12}=-\frac{52}{13}=-4\)

=>\(\frac{a}{10}=-4\)=> a=-40

\(\frac{b}{15}=-4\)=>b=-60

\(\frac{c}{12}=-4\)=> c=-48