Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{6}=\frac{c}{7}=\frac{a^2}{16}+\frac{b^2}{36}-\frac{c^2}{49}=\frac{a^2+b^2-c^2}{16+36-49}=\frac{12}{3}=4\)
vậy:
a/4=4 =>a=4.4=16
b/6=4 =>b=4.6=24
c/7=4 =>c=4.7=28
Theo bài ra ta có : \(\frac{a}{4}=\frac{b}{6}=\frac{c}{7}\)và a2+b2_ c2= 12
Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a}{4}=\frac{b}{6}=\frac{c}{7}=\frac{a^2+b^2-c^2}{4^2+6^2-7^2}=\frac{12}{16+36-49}=4\)
=> a=...;b=...;c=...
Mình đang vội nên làm đến đây thôi, bạn làm tiếp nhé, nếu đúng tick cho mình nhé
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$
$=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b+3c}{2+6+12}=\frac{-20}{20}=-1$
$\Rightarrow a=2(-1)=-2; b=3(-1)=-3; c=4(-1)=-4$
2.
$S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{9900}$
$=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
a) Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right)\cdot2=-2\\b=\dfrac{\left(-1\right).6}{2}=-3\\c=\dfrac{\left(-1\right).12}{3}=-4\end{matrix}\right.\)
b) Ta có : \(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\).
Vậy : \(S=\dfrac{99}{100}.\)
a)\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=-\dfrac{20}{20}=-1\)
\(\left\{{}\begin{matrix}\dfrac{a}{2}=-1\Leftrightarrow a=-2\\\dfrac{b}{3}=-1\Leftrightarrow b=-3\\\dfrac{c}{4}=-1\Leftrightarrow c=-4\end{matrix}\right.\)
b)\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8