K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

NV
2 tháng 4 2019

Cách làm đều giống nhau, mình làm câu a, các câu còn lại bạn tự giải tương tự:

\(x^2+\left(3y-1\right)x+2y^2-y+3=0\) (1)

Coi đây là pt bậc 2 theo ẩn x với y là tham số

\(\Delta=\left(3y-1\right)^2-4\left(2y^2-y+3\right)=\left(y-1\right)^2-12\)

Để pt có nghiệm nguyên \(\Rightarrow\Delta=k^2\Rightarrow\left(y-1\right)^2-12=k^2\)

\(\Leftrightarrow\left(y-1\right)^2-k^2=12\Leftrightarrow\left(y-1-k\right)\left(y-1+k\right)=12\)

Đến đây giải pt nguyên như bình thường, nhưng 12 có rất nhiều ước nguyên (có 2.(2+1)(1+1)=12 ước nguyên) nên ta thêm bước nhận xét do \(\left(y-1-k\right)+\left(y-1-k\right)=2\left(y-1\right)\) chẵn nên luôn cùng tính chẵn lẻ, vậy ta chỉ cần xét các trường hợp \(\left(2;6\right);\left(-2;-6\right);\left(6;2\right);\left(-6;-2\right)\)

Ví dụ 1 trường hợp, bạn tự làm 3 trường hợp còn lại:

\(\left\{{}\begin{matrix}y-1-k=2\\y-1+k=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=5\\k=2\end{matrix}\right.\)

Thế \(y=5\) vào (1): \(x^2+14x+48=0\Rightarrow\left[{}\begin{matrix}x=-6\\x=-8\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Bài 3:

PT \(\Leftrightarrow x^2y+xy^2-(x^2+y^2)-1=0\)

\(\Leftrightarrow xy(x+y)-[(x+y)^2-2xy]-1=0\)

\(\Leftrightarrow ab-(a^2-2b)-1=0\) (đặt $x+y=a; xy=b$)

\(\Leftrightarrow a^2-ab-2b+1=0\)

\(\Leftrightarrow a^2-b(a+2)+1=0\)

\(\Leftrightarrow b(a+2)=a^2+1\)

Nếu $a+2=0$ thì $a=-2$

$\Rightarrow b.0=5$ (vô lý). Do đó $a+2\neq 0$

$\Rightarrow b=\frac{a^2+1}{a+2}$.

Với $x,y$ nguyên thì $a,b$ nguyên. Để $b$ nguyên thì $a^2+1\vdots a+2$

$\Leftrightarrow (a-2)(a+2)+5\vdots a+2$

$\Leftrightarrow 5\vdots a+2$

$\Rightarrow a+2\in\left\{\pm 1;\pm 5\right\}$

$\Rightarrow a\in\left\{-3; -1; -7; 3\right\}$

$\Rightarrow b\in\left\{-10; 2; -10; 2\right\}$ (tương ứng)

Với $(a,b)=(-3,-10)$, áp dụng đly Vi-et đảo thì $x,y$ sẽ là nghiệm của PT $X^2+3X-10=0$ $\Rightarrow (x,y)=(2,-5)$ và hoán vị.

Tương tự với các TH còn lại ta thu được: $(x,y)=(2,1); (2,-5)$ và các hoán vị.

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Bài 4: Ta xét các TH sau:

TH1 $x\geq 1$

\(x^6+3x^3+1>x^6=(x^3)^2\)

\(x^6+3x^3+1=(x^3+2)^2-x^3-3< (x^3+2)^2\)

\(\Rightarrow (x^3)^2< x^6+3x^3+1< (x^3+2)^2\)

\(\Leftrightarrow (x^3)^2< y^4< (x^3+2)^2\)

Theo nguyên lý kẹp thì $y^4=(x^3+1)^2$

$\Leftrightarrow x^6+3x^3+1=(x^3+1)^2$

$\Leftrightarrow x=0$ (loại vì $x\geq 1$)

TH2: $x=0; x=-1$ thì ta thấy $x=0$ thỏa mãn, kéo theo $y=\pm 1$

TH3: $x\leq -2\rightarrow x^3\leq -8$. Do đó:
\(x^6+3x^3+1\leq x^6+2x^3+(-8)+1< (x^3+1)^2\)

\(x^6+3x^3+1=x^6+4x^3-x^3-1\geq x^6+4x^3+9>(x^3+2)^2\)

\(\Rightarrow (x^3+1)^2> x^6+3x^3+1> (x^3+2)^2\)

\(\Rightarrow (x^3+1)^2>y^4> (x^3+2)^2\) (vô lý theo nguyên lý kẹp)

Vậy $(x,y)=(0,\pm 1)$

15 tháng 9 2019

\(y=\sqrt{x^2+2x+4}\)

\(\Leftrightarrow y^2=x^2+2x+4\)

\(\Leftrightarrow y^2=\left(x+1\right)^2+3\)

\(\Leftrightarrow\left(y-x-1\right)\left(y+x+1\right)=3\)

Đến đây bạn lập bảng ạ

16 tháng 9 2019

b) \(PT\Leftrightarrow x^2-2x+1-y^2=12\Leftrightarrow\left(x-y+1\right)\left(x+y+1\right)=12\)

Đến đây chắc là lập bảng ạ.