Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra:
\(f\left(x\right)=\left(g\left(x\right)\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+c^2x^2+d^2+2.x^2.cx+2.cx.d+2x^2.d\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=2c\\b=c^2+2d\\-8=2cd;4=d^2\end{cases}}\)
=> Tìm được a, b, c, d.
Tìm các hệ số a, b, c để đa thức \(x^4+ax^3+bx^2-8x+4\) là bình phương đúng của đa thức \(x^2+cx+d\)
\(\left(x^2+cx+d\right)^2=x^4+c^2x^2+d^2+2x^3c+2x^2d+2cdx\)
vì \(x^4+ax^3+bx^2-8x+4\: \)là bình phương đúng của \(x^2+cx+d\) nên:
\(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
\(\Rightarrow\left\{{}\begin{matrix}a=2c\\b=2d+c^2\\2cd=-8\\4=d^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-4\\b=8\\c=-2\\d=2\end{matrix}\right.\)
vậy các số cần tìm là a=-4; b=8; c=-2; d=2
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
Ta có:\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Ta có:A=x4−2x3−x2+ax+b
A=x3(x−2)−x(x−a)+b
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
Câu hỏi của Trà My - Toán lớp 8 - Học toán với OnlineMath