Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x^2+2y^2-x-y-2xy+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+y^2-2xy\right)+\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}^2\right)=0\)
Nhận xét \(\left(x-y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}}\)
\(x^2+2xy+2y^2=7.\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+y^2=7\)
\(\Leftrightarrow\left(x+y\right)^2+y^2=7\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2>0\\y^2>0\end{cases}}\)nên \(y^2< 7\)
Mà y nguyên dương nên suy ra \(\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}\Rightarrow}\orbr{\begin{cases}\left(x+y\right)^2=7-1=6\\\left(x+y\right)^2=7-4=3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=\sqrt{6}\\x+y=\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-1\left(khongthoaman\right)\\y=\sqrt{3}-2\left(khongthoaman\right)\end{cases}}}\)
Vậy không có cặp x, y nào thỏa mãn đề bài
Ta có: x^2=(y^2+2y+1)+12=(y+1)^2 +12
suy ra x^2-(y+1)^2=(x-y-1)(x+y+1)=12
Do x, y là số nguyên nên ta có bảng sau:
x-y-1 1 2 3
x+y+1 12 6 4 (do x+y+1 lớn hơn x-y-1)
Đến đây thì bạn tự làm nhé.