Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)
Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)
Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)
b) Tương tự
a) để A có giá trị nhỏ nhất
\(\Rightarrow A=\frac{1}{x-3}\ge-1\)
Dấu "=" xảy ra khi
\(A=\frac{1}{x-3}=-1\)
=> x - 3 = -1
x = 2
KL: giá trị nhỏ nhất của A= -1 tại x =2
b) ta có: \(B=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5.\left(x-4\right)+1}{x-4}=\frac{5.\left(x-4\right)}{x-4}+\frac{1}{x-4}\)\(=5+\frac{1}{x-4}\)
Để B đạt giá trị nhỏ nhất
\(\frac{1}{x-4}\ge-1\)
Dấu "=" xảy ra khi
1/x-4 = -1
=> x-4= -1
=> x = 3
=> 5+ 1/x-4 = 5+ 1/3-4 = 5 + (-1) =4
KL: giá trị nhỏ nhất của B là 4 tại x = 3
p/s nha!
a) Công chúa Ori làm sai rùi nha
TH1:x>=4 => x-3>=1>0 => A>0
TH2: x<=2 => x-3 <= -1 <0 => A>= -1
Dấu = xảy ra <=> x=2
Vậy Min A =-1 tại x=2
b) B= ...=5+1/x-4
TH1: x>=5 => x-4>=1>0 => 1/x-4>0 => B>5
TH2: x<=3 => x-4<=-1 <0 => 1/x-4>=-1 => B >=4
Dấu = xảy ra <=> x=3
Vậy Min B = 4 tại x=3
1) \(M=\frac{x-1}{x-5}=\frac{\left(x-5\right)+4}{x-5}=1+\frac{4}{x-5}\)
Vậy để M nguyên thì \(x-5\inƯ\left(4\right)\)
Mà Ư(4)={1;-1;2;-2;4;-4}
Ta có bảng sau:
x-5 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 6 | 4 | 7 | 3 | 9 | 1 |
Vậy x={1;3;4;6;7;9}
2) Để M âm
\(\Leftrightarrow\)\(\frac{x-1}{x-5}< 0\)
\(\Leftrightarrow\begin{cases}x-1>0\\x-5< 0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\x-5>0\end{cases}\)
\(\Leftrightarrow1< x< 5\)
hố hố..................................................................
Để \(\frac{3}{x^2+x+1}\) nhận giá trị nguyên \(\Leftrightarrow x^2+x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Mà \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Nên \(x^2+x+1=\left\{1;3\right\}\)
TH1: \(x^2+x+1=1\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)
TH2\(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\left(TM\right)\)
Vậy \(x\in\left\{-2;-1;1;0\right\}\)
10x + 15 / 5x+1 =2x. (5x+ 1) + 13/ 5x + 1
= 1 + 2x + 13 / 5x + 1 để A/frac/ 2x + 13/ 5x+1 nhận giá trị nguyên thì :
2x + 13 phải chia hết cho 5x +1 , ta có :
2x + 13 = 5x +1
=> 2x + 5x = 13 +1
=> 7x =14
=> x= 2
Vậy x = 2 thì A có giá trị nguyên
\(A=\frac{10x+15}{5x+1}=\frac{2\left(5x+1\right)+13}{5x+1}=\frac{2\left(5x+1\right)}{5x+1}+\frac{13}{5x+1}\)
\(\Rightarrow5x+1\inƯ\left(13\right)=\left(-13;-1;1;13\right)\)
Ta có: \(5x+1=-13\Rightarrow x=-\frac{14}{5}\left(loại\right)\)
\(5x+1=-1\Rightarrow x=-\frac{2}{5}\left(loại\right)\)
\(5x+1=1\Rightarrow x=0\left(chọn\right)\)
\(5x+1=13\Rightarrow x=\frac{12}{5}\left(loại\right)\)
Vậy x=0