Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 - 6 x - m
Hàm số có 2 cực trị m > -3 , gọi x 1 , x 2 là hai nghiệm của phương trình y ' = 0 ,
ta có: x 1 + x 2 = 2
Bấm máy tính
Hai điểm cực trị của đồ thị hàm số là
Gọi I là trung điểm của AB
⇒ I ( 1 ; - m )
Đường thẳng đi qua hai điểm cực trị là
Yêu cầu bài toán
Kết hợp với điều kiện thì m = 0
Chọn D
Ta có y ' = 3 x 2 - 6 m x + m - 1
Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0 có hai nghiệm phân biệt
Điều này tương đương
Hai điểm cực trị có hoành độ dương
Vậy các giá trị cần tìm của m là m >1
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
Chọn C
[Phương pháp tự luận]
Hàm số có cực đại , cực tiểu khi và chỉ khi m < 1
Tọa độ điểm cực trị A ( 0 ; m + 1 )
Phương trình đường thẳng BC: y + m 4 - 2 m 2 - m = 0
Vậy S đạt giá trị lớn nhất ⇔ m = 0
[Phương pháp trắc nghiệm]
Vậy S đạt giá trị lớn nhất ⇔ m = 0
Đạo hàm y’ = 3x2+6x+m. Ta có ∆ ' y ' = 9 - 3 m
Hàm số có cực đại và cực tiểu khi ∆ ' y ' = 9 - 3 m > 0 ⇔ m < 3
Ta có
Gọi x1; x2 là hoành độ của hai điểm cực trị khi đó
Theo định lí Viet, ta có
Hai điểm cực trị nằm về hai phía trục hoành khi y1.y2<0
Chọn C.
Chọn C.
Tập xác định: D = ℝ
Xét
Với m = 1, hàm số đã cho trở thành:
Hàm số này đạt cực tiểu tại điểm A(0;-1) nên không thỏa mãn yêu cầu bài toán.
Với m = -1, hàm số đã cho trở thành:
Hàm số này đạt cực đại tại điểm B(0;-3) nên thỏa mãn yêu cầu bài toán.
Xét m ≠ ± 1 ta có
Xét y' = 0
Với m = 0 phương trình y' = 0 có nghiệm bồi 3 và nên hàm số đạt cực đại tại điểm C(0;-1) nên thỏa mãn yêu cầu bào toán.
Với m ≠ 0 hàm số đã cho chỉ có một điểm cực đại và không có điểm cực tiểu khi và chỉ khi
- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)
- Với \(m\ne0\) hàm chỉ có cực đại khi:
\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)
Vậy \(m\le0\)