K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

(x3-4x)2+ 3x2.Iy-3I=0

ta thấy (x3-4x)2  luôn lớn hơn hoặc bằng 0

            3x2.Iy-3I luôn lớn hơn hoặc bằng 0

vậy để (x3-4x)2+ 3x2.Iy-3I = 0 thì cả hai số hạng (x3-4x)2 và 3x2.Iy-3I  phải cùng bằng 0

+)  (x3-4x)=0 

,<=> x3-4x=0  <=>x( x2-4)=0 

<=> x = 0 , x = -2 và x = 2

+) 3x2.Iy-3I = 0 

<=> x = 0 hoặc y-3 = 0  <=> y = 3

vậy các cặp (x; y) thỏa mãn là: (0;3)  ;  (-2;3)  ; (2;3)

 

 

26 tháng 9 2015

Hỏi tổng thống Brack Obama trả lời cho ?

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

1.

PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$

$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$

$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$

$\Rightarrow d=1,2$

Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)

$\Rightarrow d=1$

Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
 $y^2+1, y+1$ cũng là scp

Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$

$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$

$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$

$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$

 

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

2.

$x^4+2x^2=y^3$

$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$

Đặt $d=(y+1, y^2-y+1)$

$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$

$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$

$\Rightarrow 3y\vdots d$

Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,

$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)

Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$

$\Rightarrow y\vdots d$

Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
 $y+1, y^2-y+1$ cũng là scp

Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$

Có:

$y^2-y+1=b^2$

$\Leftrightarrow (2y-1)^2+3=(2b)^2$

$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$

Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

Bài đã đăng rồi thì bạn không nên đăng lặp lại nữa, tránh gây loãng box toán.

30 tháng 12 2015

Câu hỏi tương tự (CHTT) 

30 tháng 12 2015

trong chtt ko co dau !

1 tháng 9 2016

ek cu hay qua do 

                      n.minh