K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 10 2019

Từ đề bài ta có:

a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)

b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì

a: TH1: m=1

Pt sẽ là -8x+1=0

hay x=1/8(nhận)

TH2: m<>1

\(\text{Δ}=\left(2m+6\right)^2-4\left(m-1\right)\left(-m+2\right)\)

\(=4m^2+24m+36+4\left(m^2-3m+2\right)\)

\(=4m^2+24m+36+4m^2-12m+8\)

\(=8m^2+12m+44\)

\(=4\left(3m^2+2m+11\right)>0\forall m\)

Do đó: PT luôn có hai nghiệm phân biệt

b: TH1: m=1

Pt sẽ là 3x+1=0

hay x=-1/3(loại)

TH2 m<>1

\(\text{Δ}=\left(3m\right)^2-4\left(m-1\right)\)

\(=9m^2-4m+4\)

\(=9\left(m^2-\dfrac{4}{9}m+\dfrac{4}{9}\right)\)

\(=9\left(m^2-2\cdot m\cdot\dfrac{2}{9}+\dfrac{4}{81}+\dfrac{32}{81}\right)\)

\(=9\left(m-\dfrac{2}{9}\right)^2+\dfrac{32}{9}>0\)

Do đó: PT luôn có hai nghiệm phânbiệt

Để pt có hai nghiệm dương phân biệt thì

\(\left\{{}\begin{matrix}\dfrac{-3m}{m-1}>0\\\dfrac{1}{m-1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\0< m< 1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)