K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

=>    \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=>   \(\frac{x}{4}=2;\frac{y}{6}=2;\frac{z}{9}=2\)

=>    \(x=8;y=12;z=18.\)

21 tháng 8 2020

Ta có \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

Lại có x + y + z = 38

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=> x = 8 ; y = 12 ; z = 18

11 tháng 10 2020

Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)

\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)

11 tháng 10 2020

bn làm đúng rồi nhá và 1 k cho bạn

13 tháng 8 2017

Ta có:

\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\)=>\(\frac{y}{12}=\frac{z}{15}\)

=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\frac{x}{8}=2\)=>x=16

   \(\frac{y}{12}=2\)=>y=24

    \(\frac{z}{15}=2\)=>z=30

Vậy x=16 ; y=24 ; z=30

13 tháng 8 2017

y/4 = z/5 => y = 4z/5

x/2 = y/3 = 4z/15 = (x + y - z)/(2 + 3 - 3,75) = 8

=> x = 16; y = 24; z = 10

Có \(\frac{x-1}{10}=\frac{y-2}{6}=\frac{z-3}{21}\) và \(5x+y-2x=38\)

\(\Rightarrow\frac{5\left(x-1\right)}{5.10}=\frac{y-2}{6}=\frac{2\left(z-3\right)}{2.21}=\frac{5x-5}{50}=\frac{y-2}{6}=\frac{2z-6}{42}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có : 

\(\frac{5x-5}{50}=\frac{y-2}{6}=\frac{2z-6}{42}=\frac{\left(5x-5\right)+\left(y-2\right)-\left(2z-6\right)}{50+6-42}\)

\(=\frac{5x-5+y-2-2z+6}{50+6-42}=\frac{\left(5x+y-2z\right)+\left(6-5-2\right)}{50+6-42}\)

\(=\frac{38+\left(-1\right)}{50+6-42}=\frac{38+\left(-1\right)}{56-42}=\frac{38-1}{14}=\frac{37}{14}\)  . Từ đó ta có

\(\Rightarrow\frac{5x-5}{50}=\frac{37}{14}\Leftrightarrow5=\left(5x-5\right).14=37.50\Leftrightarrow\left(5x-5\right).14=1850\) 

\(\Rightarrow5x-5=\frac{1850}{14}=\frac{925}{7}\Leftrightarrow5x=\frac{935}{7}+\frac{25}{7}=\frac{960}{7}\Leftrightarrow x=\frac{192}{7}\)

\(\Rightarrow\frac{y-2}{6}=\frac{37}{14}=14\left(y-2\right)=37.6=222\Leftrightarrow y-2=\frac{111}{7}\Leftrightarrow y=\frac{125}{7}\)

\(\Rightarrow\frac{2z-6}{42}=\frac{37}{14}\Leftrightarrow14\left(2z-6\right)=37.42\Leftrightarrow14\left(2z-6\right)=1554\)

\(\Rightarrow2z-6=1544\div11=111\Leftrightarrow2z=117\Leftrightarrow z=58,5\)

20 tháng 9 2019

phần 1 ghi ko rõ

20 tháng 9 2019

2) Vì \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{7}{-2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-7}{2}.5=\frac{-35}{2}\\y=\frac{-7}{2}.7=\frac{-1}{2}\end{cases}}\)

Vậy ..

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

22 tháng 10 2018

a) Ta có:

\(\frac{x}{4}=\frac{y}{5}\)và \(x+y=18\)

AĐTCCDTSBN(Áp dụng tính chất của dãy tỉ số bằng nhau)

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\frac{x}{4}=2\Rightarrow x=2.4=8\)

\(\frac{y}{5}=2\Rightarrow y=2.5=10\)

Bài kia tương tự

22 tháng 10 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)

Vậy x = 8; y = 10

b) Ta có : 

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{12}=\frac{x+y+z}{8+12+18}=\frac{20}{38}=\frac{10}{19}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{10}{19}\\\frac{y}{12}=\frac{10}{19}\\\frac{z}{18}=\frac{10}{19}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{80}{19}\\y=\frac{120}{19}\\z=\frac{180}{19}\end{cases}}}\)

Vậy \(x=\frac{80}{19};y=\frac{120}{19};z=\frac{180}{19}\)

10 tháng 10 2019

\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)

ta có :

\(\frac{x}{3}=\frac{y}{5}\)

\(\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)

\(\frac{x}{12}=3\Rightarrow x=36\)

\(\frac{y}{20}=2\Rightarrow y=40\)

\(\frac{z}{15}=2\Rightarrow z=30\)

10 tháng 1 2016

áp dụng t/c dãy tỉ số = nhau ta có :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3+1}{x+y+z+x+y+z}=\frac{x+x+y+y+z+z}{x+x+y+y+z+z}=\frac{2\left(x+y+z\right)}{2\left(x+y+z\right)}=1\)

=>y+z+1/x=1

=>y+z+1=x

=>y+z=x+1 (1)

mặt khác : 1/x+y+z=1

=>x+y+z=1

từ (1)

=>x+1+x=1

=>2x+1=1

=>2x=0

=>x=0

tương tự cới y và z bạn tự tính tiếp nhé :))) ! 

10 tháng 1 2016

nhầm  roài xin lỗi bạn đợi mik làm lại cko