K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

\(A=\frac{5-x}{x-2}\)

\(\Leftrightarrow-A=\frac{x-5}{x-2}\)

\(\Leftrightarrow-A=\frac{x-2-3}{x-2}=1-\frac{3}{x-2}\)

Xét \(x>2\Leftrightarrow\frac{3}{x-2}>0\)

      \(x< 2\Leftrightarrow\frac{3}{x-2}< 0\)

Suy ra -A đạt GTNN\(\Leftrightarrow x>2\)

Mà \(x\inℤ\)nên x = 3 

\(\Rightarrow-A_{min}=\frac{2}{1}=2\)

hay \(A_{max}=-2\Leftrightarrow x=3\)

22 tháng 9 2016

a)Ta có:\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Để \(A\in Z\)thì \(x^2+3\inƯ\left(12\right)=1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\)

\(x^2=-2;-4;-1;-5;0;-6;1;-7;3;-9;9;-15\)

Mà \(x^2\ge0\Rightarrow x^2=0;1;3;9\)

Mà \(x\in Z\Rightarrow x=0;1;-1;3;-3\)

b)Ta có:\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Để \(A\) lớn nhất thì \(\frac{12}{x^2+3}\)phải lớn nhất

Để \(\frac{12}{x^2+3}\)lớn nhất thì \(x^2+3\)phải bé nhất

Để \(x^2+3\)bé nhất thì \(x^2\)phải bé nhất

Mà \(x^2\ge0\)

Dấu ''='' xảy ra khi \(x^2=0\)

Vậy để \(A\) lớn nhất thí \(x=0\)

Vậy \(Amax=\frac{x^2+15}{x^2+3}=\frac{0^2+15}{0^2+3}=\frac{0+15}{0+3}=\frac{15}{3}=5\)

13 tháng 7 2016

để x thuộc z thì 3 phải chia hết cho x-2

suy ra x-2 thuộc ước của 3 là+- 1 và +- 3

suy ra x thuộc 3, 1,5,-3

ok 

15 tháng 11 2016

Ta co \(\frac{a+x}{b+y}=\frac{a}{b}\)

=> \(b\left(a+x\right)=a\left(b+y\right)\)

\(ab+bx=ab+ay\)

=> \(bx=ay\)

=> \(\frac{a}{b}=\frac{x}{y}\)

Vay gia tri cua x,y tuy thuoc vao gia tri cua a,b

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12

4 tháng 8 2015

vì \(x=\frac{a}{m};y=\frac{b}{m}\) và  x<y nên a/m<b/m hay a<b

so sánh z và x có 

x=\(\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}\)

vì z=\(\frac{a+b}{2m}\)mà \(\frac{a+a}{2m}<\frac{a+b}{2m}\) (vì a<b)

nên suy ra x<z (1)

so sánh z và y có 

y=\(\frac{b}{m}=\frac{2b}{2m}=\frac{b+b}{2m}\)

vì z=\(\frac{a+b}{2m}\) mà \(\frac{a+b}{2m}<\frac{b+b}{2m}\)(vì a<b)

nên suy ra z<y (2)

từ (1) vaf (2) suy ra x<z<y