Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{4}-\frac{1}{2}=\frac{3}{b}\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)
\(\Rightarrow\left(a-2\right).b=4.3=12\)
\(\Rightarrow b\in U\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Lập bảng rồi tự tìm a;b.
\(\frac{a}{4}\)-\(\frac{1}{2}\)=\(\frac{3}{b}\)
\(\frac{a}{4}\)-\(\frac{2}{4}\)=\(\frac{3}{4}\)
=>\(a=5;b=4\)
Thay a = 5 ; b = 4 vào ta được :\(\frac{5}{4}\)-\(\frac{1}{2}\)=\(\frac{3}{4}\)
Vậy phép tính trên = \(\frac{3}{4}\)
\(\Rightarrow2\left(a+b+c\right)=\frac{5}{2}+\frac{9}{4}-\frac{5}{4}=\frac{7}{2}\)
Lại có \(2\left(a+b\right)=5\)
\(\Rightarrow2c=\frac{7}{2}-5=\frac{-3}{2}\Rightarrow c=\frac{-3}{4}\)
\(\Rightarrow a=\frac{-5}{4}-\frac{-3}{4}=\frac{-1}{2}\)
\(\Rightarrow b=\frac{5}{2}+\frac{1}{2}=3\)
2,
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=...=\dfrac{a_9-9}{1}=\dfrac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}=\dfrac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\dfrac{90-45}{45}=\dfrac{45}{45}=1\\ \Rightarrow a_1=a_2=...=a_9=10\)
1) a thiếu đề .
b) \(\dfrac{2x}{3}=\dfrac{2y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{2}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{2}=\dfrac{z}{\dfrac{5}{4}}\)
\(=\dfrac{x+y+z}{\dfrac{3}{2}+2+\dfrac{5}{4}}=\dfrac{49}{\dfrac{19}{4}}\)
\(=\dfrac{196}{19}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{196}{19}.\dfrac{3}{2}=\dfrac{294}{19}\\y=\dfrac{196}{19}.2=\dfrac{392}{19}\\z=\dfrac{196}{19}.\dfrac{5}{4}=\dfrac{245}{19}\end{matrix}\right.\)
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=....=\dfrac{a_9-9}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=...=\dfrac{a_9-1}{1}\)
\(=\dfrac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\dfrac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)
\(=\dfrac{90-45}{45}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1-1}{9}=1\Rightarrow a_1-1=9\Rightarrow a_1=10\\\dfrac{a_2-2}{8}=1\Rightarrow a_2-2=8\Rightarrow a_2=10\\\dfrac{a_9-9}{1}=1\Rightarrow a_9-9=1\Rightarrow a_9=10\end{matrix}\right.\)
\(\Rightarrow a_1=a_2=...=a_9=10\)
Câu 2:
a: \(4^{30}=2^{60}=2^{30}\cdot2^{30}=2^{30}\cdot8^{10}\)
\(\left(3\cdot24\right)^{10}=\left(9\cdot8\right)^{10}=9^{10}\cdot2^{30}\)
mà 8<9
nên \(4^{30}< \left(3\cdot24\right)^{10}\)
b: \(\left(0.36\right)^{42}=\left(0.6\right)^{84}\)
\(\left(0.216\right)^{28}=\left(0.6\right)^{84}\)
Do đó: \(0.36^{42}=0.216^{28}\)
c: \(3^{5n}=243^n\)
\(5^{3n}=125^n\)
mà 243>125
nên \(3^{5n}>5^{3n}\)
Theo tính chất dãy tỉ số bằng nhau:
\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{1}{2}\)
ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy ...
a, Ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
\(\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(\Rightarrow y=2.3=6\)
\(\Rightarrow z=2.9=18\)
b, Ta có: \(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{9}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60\)
\(\Rightarrow y=6.9=54\)
\(\Rightarrow z=6.12=72\)
c, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\Rightarrow x=3.9=27\)
\(\Rightarrow y=3.12=36\)
\(\Rightarrow z=3.20=60\)