Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)\(\Rightarrow\frac{1}{2}\times a\times\frac{1}{6}=\frac{2}{3}\times b\times\frac{1}{6}=\frac{3}{4}\times c\times\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow\frac{a}{12}=5\Rightarrow a=12\times5=60\)
\(\Rightarrow\frac{b}{9}=5\Rightarrow b=9\times5=45\)
\(\Rightarrow\frac{c}{8}=5\Rightarrow c=8\times5=40\)
chúc bạn học tốt!!
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{2}=\frac{2b}{3}=\frac{3b}{4}\)
\(\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}=\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60\); \(b=5.9=45\); \(c=5.8=40\)
Vậy \(a=60\), \(b=45\), \(c=40\)
https://olm.vn/hoi-dap/detail/211794512831.html
Tham khảo ở link này (mình gửi cho)
Học tốt!!!!!!!!!!
\(a)\)\(b^2-b+3\left(b+1\right)=0\)
\(\Leftrightarrow\)\(b^2-b+3b+3=0\)
\(\Leftrightarrow\)\(b^2+2b+1=-2\)
\(\Leftrightarrow\)\(\left(b+1\right)^2=-2\) ( vô lí vì \(\left(b+1\right)^2\ge0\) )
Vậy không có giá trị của b thỏa mãn đề bài
Chúc bạn học tốt ~
\(b)\)\(\frac{4x-3}{2}=\frac{5-2x}{3}\)
\(\Leftrightarrow\)\(3\left(4x-3\right)=2\left(5-2x\right)\)
\(\Leftrightarrow\)\(12x-9=10-4x\)
\(\Leftrightarrow\)\(12x+4x=10+9\)
\(\Leftrightarrow\)\(16x=19\)
\(\Leftrightarrow\)\(x=\frac{19}{16}\)
Vậy \(x=\frac{19}{16}\)
Chúc bạn học tốt ~
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\) và a-b=15
giúp mk vs càng nhanh càng tốt nha...thanks nhìu
bài 1: có 2x-y=1=> 2x=1+y=> x =1+y/2 (1)
thay (1) vào pt trên: x/2=y/5=(1+y/2)/2=y/5 => 1+y/4=y/5=> 5(1+y)=4y (nhân chéo)=> y= -5=> x=(1+-5)/2=-2
câu 2: a) tương tự như bài 1:thay b=4+a vào pt => a=8 và b=12
bài 3 dể mà!!!:)). 3^n+2 +3^n=270=> 3^n.3^2+3^n=270=> 3^n.(9+1)=270( vì 3 bình =9)=> 3^n=27=3^3 => n=3
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)