Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d= ƯCLN(a,b) ( d thuộc N* )
=> a= dq
b=dk
q,k thuộc N*
(q,k)=1
MÀ a+b=42
dq+dk=42
d(kq+1)=42
Lập bảng xét d thuộc Ư(42) và kq+1
đúng đấy bạn ạ quyển nâng cao và phát triển toán 6 tập 1 của Vũ Hữu Bình nhé
do 72=\(2^3.3^2\)
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
do 72=2^3.3^2$2^3.3^2$
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
.Tìm số tự nhiên a và b (a<b) biết a+ b =42 và BCNN(a
**** NHE
Lời giải:
Gọi $ƯCLN(a,b)=d$ thì đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $0< x< y$, $x,y$ nguyên tố cùng nhau,
Ta có:
$a+b=dx+dy=d(x+y)=42$
$BCNN(a,b)=dxy=114$
$\Rightarrow d=ƯC(42,114)$
$\Rightarrow ƯCLN(42,114)\vdots d$
$\Rightarrow 6\vdots d$
Nếu $d=1$ thì: $x+y=42; xy=114$
$xy=114=2.3.19$. Mà $x<y$ và $x,y$ nguyên tố cùng nhau nên $(x,y)=(2,57), (6,19), (3,38), (1,114)$
Mà $x+y=42$ nên $x=3, y=38$
$\Rightarrow a=dx=x=3; b=dy=y=38$
Nếu $d=2$ thì: $x+y=21; xy=57$
$xy=57=3.19$. Mà $x<y$ và $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,57), (3,19)$
Mà $x+y=21$ nên không có cặp x,y nào thỏa mãn
Nếu $d=3$ thì: $x+y=14; xy=38$
$xy=38=2.19$ mà $x<y, ƯCLN(x,y)=1$ nên $(x,y)=(1,38), (2,19)$
Mà $x+y=14$ nên không có giá trị nào thỏa mãn
Nếu $d=6$ thì: $x+y=7; xy=19$
$\Rightarrow x=1; y=19$ (loại do $x+y=7$)
Vậy $x=3; y=38$