Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài của bạn giống bài của Vũ Thị Thúy, mìh đã giải cho bạn ấy rồi đó. bn xem bài của bn ấy nhé
K ĐÚNG NHA
Đặt a + b = ab = a : b = k
Ta có : a/b = k => a = kb
=> kb + b = kbb = k
=> (k + 1) b = kb2 = k
Từ kb2 = k
=> kb2 - k = 0
=> k (b2 - 1) = 0
=> k = 0 hoặc b2 - 1 = 0
=> k = 0 hoặc b = ±1
Trường hợp k = 0 => a = 0
=> 0 + b = 0 => b = 0 (loại vì b ≠ 0)
Trường hợp b = 1
=> a + 1 = a . 1 => a + 1 = a => 1 = 0 (vô lí)
=> b = 1 ko thỏa mãn
Trường hợp b = -1
=> a - 1 = a (-1) => a - 1 = -a => a - 1 +a = 0 => 2a - 1 = 0 => a = 1/2
\(\hept{\begin{cases}2x=5y\\3x+4y=46\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}\\3x+4y=46\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3x}{\frac{3}{2}}=\frac{4y}{\frac{4}{5}}\\3x+4y=46\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{\frac{3}{2}}=\frac{4y}{\frac{4}{5}}=\frac{3x+4y}{\frac{3}{2}+\frac{4}{5}}=\frac{46}{\frac{23}{10}}=20\)
\(\frac{3x}{\frac{3}{2}}=20\Rightarrow3x=30\Rightarrow x=10\)
\(\frac{4y}{\frac{4}{5}}=20\Rightarrow4y=16\Rightarrow y=4\)
2.x=5.y = \(\frac{X}{5}\)=\(\frac{Y}{2}\)=\(\frac{3x+4Y}{3.5+4.2}\)=\(\frac{46}{23}\)=2
\(\frac{X}{5}\)=2 => x=2.5=10
\(\frac{Y}{2}\)=2 =>y=2.2=4
nhanh nhé các bạn ơi ai trả lời đầu tiên nhanh nhất mà còn đúng mình sẽ k cho
/ a - b = 2( a+ b)
a - b = 2a + 2b
a - 2a = 2b + b
-a = 3b
Ta có -a = 3b => a = - 3b => a: b = -3b: b = -3
a - b = 2( a+ b) = - 3
=> a - b = -3 ; 2(a+b) = - 3 => a + b = -3/2
Quay về dạng tìm hai số khi biết tổng và hiệu
\(a-b=\dfrac{a}{b}=3\left(a+b\right)\\ \Leftrightarrow3a+3b-a+b=0\\ \Leftrightarrow2a+4b=0\\ \Leftrightarrow a+2b=0\Leftrightarrow a=-2b\)
Mà \(a-b=\dfrac{a}{b}\Leftrightarrow-3b=-\dfrac{2b}{b}=-2\Leftrightarrow b=\dfrac{2}{3}\)
\(\Leftrightarrow a=-2\cdot\dfrac{2}{3}=-\dfrac{4}{3}\)
Vậy \(\left(a;b\right)=\left(-\dfrac{4}{3};\dfrac{2}{3}\right)\)
\(\hept{\begin{cases}a:b=3:5\\b-a=-16\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{3}=\frac{b}{5}\\b-a=-16\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{b-a}{5-3}=\frac{-16}{2}=-8\)
\(\Rightarrow\hept{\begin{cases}a=-8\cdot3=-24\\b=-8\cdot5=-40\end{cases}}\)
Ta có: \(\dfrac{a}{2}=\dfrac{3}{b}\)
nên ab=6
Ta có: a:b=4
nên a=4b
Thay a=4b vào ab=6, ta được:
\(4b^2=6\)
\(\Leftrightarrow b^2=\dfrac{3}{2}\)
hay \(b\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)
\(\Leftrightarrow a\in\left\{2\sqrt{6};-2\sqrt{6}\right\}\)
Ta có:
\(\dfrac{a}{2}=\dfrac{3}{b}\\ \Rightarrow a.b=3.2=6\left(1\right)\)
và theo bài ra: \(a:b=4\left(2\right) \)
Lấy \(\left(1\right)\) nhân với \(\left(2\right)\) ( nhân vế theo vế ta được:
\(a.b.a:b=6.4\\ \Leftrightarrow a^2=24\\ \Leftrightarrow\left[{}\begin{matrix}a=\sqrt{24}\\a=-\sqrt{24}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}b=6:\sqrt{24}\\b=6:\left(-\sqrt{24}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}b=\dfrac{\sqrt{6}}{2}\\b=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
Vậy...