K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Ta có:

Bài tập: Chia đa thức một biến đã sắp xếp | Lý thuyết và Bài tập Toán 8 có đáp án

Để phép chia đã cho là phép chia hết khi và chỉ khi phần dư bằng 0. Do đó, a =0

Chọn đáp án A

12 tháng 9 2017

a.x^4:x^n=x^4-2

b,x^n:x^3=x^n-3

11 tháng 10 2018

a. x4 : xn = x4 : x2 = x2

b. xn : x3 = x4 : x3 = x

c. 5xny3 : 4x2y2 = 5x4y3 : 4x2y2

d. xnyn+1 : x2y5 = x4y6+1 : x2y5 = x4y7 : x2y5 = x2y2

19 tháng 10 2018

BẠN ĐỢI MK XÍU NHA

19 tháng 10 2018

1

a) x^2+2x-5                                b) x^2+x+7 9 (dư 8)

2

x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;

3

a=2

23 tháng 12 2018

1 , 

\(b,x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\Rightarrow x=2\end{cases}}\)

KL :..

\(2,x^2-y^2=\left(x+y\right)\left(x-y\right)\)

\(b,4x^2-4x+1=\left(2x\right)^2-2.2x+1\)

\(=\left(2x-1\right)^2\)

1,a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)b, Tìm số dư của phép chia A cho B. Biết:\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)\(B=\left(x^2+8x+1\right)\)c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)a, Rút gọn A ( Phải tìm...
Đọc tiếp

1,

a, Rút gon biểu thức: \(B=\frac{x^3-y^3-z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x+z\right)^2}\)

b, Tìm số dư của phép chia A cho B. Biết:

\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(B=\left(x^2+8x+1\right)\)

c, Tìm x là số nguyên tố sao cho: \(\left(x^3-2x^2+7x-7\right)chiah\text{ế}t\left(x^2+3\right)\)

2, Cho biểu thức: \(A=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\)

a, Rút gọn A ( Phải tìm TXĐ)

b, Tìm x để A = 64

3,

a, Rút gọn biểu thức: \(M=75\left(4^{2016}+4^{2015}+........+4+1\right)+25\)

b, Tìm x biết: \(x^4-30x^2+31x-30=0\)

c, Tìm x, y là các số nguyên tố để \(x^2+45=y^2\)

4, Cho tam giác ABC vuông tại A (AC > AB) đường cao AH. Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC ại D cắt AC tại E

a, CMR: AE = AB    (gợi ý: Từ E kẻ EF vuông góc với AH ( F thuộc AH)

b, Gọi M là trung điểm của BE. Tính \(\widehat{AHM}\)

5, 

a, CMR: với mọi số nguyên a thì (a^3 - a) chia hết cho 6

b, Cho \(A=a_{1^3+}a_{2^3}+........+a_{n^3}\)

          \(B=\left(a_1+a_2+.......+a_n\right)^3\)

CMR: A chia hết cho 6 thì B chia hết cho 6

0
6 tháng 10 2018

Bài 1 : 

\(a)\)\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(A=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x^2+5x\right)^2=0\)\(\Leftrightarrow\)\(x\left(x+5\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy GTNN của \(A\) là \(-36\) khi \(x=0\) hoặc \(x=-5\)

\(b)\)\(B=x^2-4x+y^2-8y+6\)

\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)

Vậy GTNN của \(B\) là \(-14\) khi \(x=2\) và \(y=4\)

Chúc bạn học tốt ~ 

6 tháng 10 2018

Bài 2 : 

\(a)\)\(0\le n\le5\)

\(b)\)\(n\ge2\)

\(c)\)\(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}\Leftrightarrow}n\ge4}\)

\(d)\)\(\hept{\begin{cases}0\le n\le3\\0\le n\le2\\0\le n\le1\end{cases}\Leftrightarrow0\le n\le1}\)

Chúc bạn học tốt ~ 

22 tháng 10 2015

1-4x-2x^2=3-2(x^2+2x+1)=3-(x+1)^2 nhỏ hơn hoặc bằng 3. max(....)=3 khi x=-1

3 tháng 7 2019

@Bonking

3 tháng 7 2019

@svtkvtm