K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

\(A=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)

\(\Rightarrow A=\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{5050}\)

\(\Rightarrow A=\frac{2}{2}\left(\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+...+\frac{3}{5050}\right)\)

\(\Rightarrow A=\frac{6}{2}+\frac{6}{6}+\frac{6}{10}+\frac{6}{20}+...+\frac{6}{10100}\)

\(\Rightarrow A=6\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{10}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(\Rightarrow A=6\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

\(\Rightarrow A=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A=6\left(1-\frac{1}{101}\right)\)

\(\Rightarrow A=6.\frac{100}{101}\)

\(\Rightarrow A=\frac{600}{101}\)

11 tháng 9 2017

\(A=\frac{3}{1}+\frac{3}{\frac{\left(2+1\right).2}{2}}+\frac{3}{\frac{\left(3+1\right).3}{2}}+....+\frac{3}{\frac{\left(100+1\right).100}{2}}\)

\(\Rightarrow A=\frac{3}{1}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+\frac{6.99}{202}=\frac{297}{101}+\frac{3}{1}=\frac{600}{101}\)

kết quả k bik có sai k

10 tháng 9 2017

Thua k câu hỏi trước của mình nhé

10 tháng 9 2017

k là k đánh lộn

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)

     \(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)

        \(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)

          \(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

          \(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

            \(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

             \(=6.\left(1-\frac{1}{101}\right)\)

               \(=6.\frac{100}{101}=\frac{600}{101}\)

Vậy \(A=\frac{600}{101}\)

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)

\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)

\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)

Vay A = ........ 

16 tháng 6 2017

\(a.\) \(25,4-\frac{1}{4}\div x+1250\%=37,5\)

 \(25,4-0.25\div x+12,5=37,5\)

\(25,4-0,25\div x=37,5-12,5\)

\(25,4-0,25\div x=25\)

\(0,25\div x=25,4-25\)

\(0,25\div x=0,4\)

\(x=0,25\div0,4\)

\(x=0,625\)

\(b.\)\(3\frac{1}{8}\div\left(\frac{2}{5}-x\right)\times\frac{8}{25}=3\)

\(\frac{3\times8+1}{8}\div\left(\frac{2}{5}-x\right)=3\div\frac{8}{25}\)

\(\frac{25}{8}\div\left(\frac{2}{5}-x\right)=\frac{75}{8}\)

\(\frac{2}{5}-x=\frac{25}{8}\div\frac{75}{8}\)

\(\frac{2}{5}-x=\frac{25}{8}\times\frac{8}{75}\)

\(\frac{2}{5}-x=\frac{1}{3}\)

\(x=\frac{2}{5}-\frac{1}{3}=\frac{6}{15}-\frac{5}{15}\)

\(x=\frac{1}{15}\)

16 tháng 6 2017

a)25,4-\(\frac{1}{4}\): x +1250%=37,5

25,4 - 0,25 : x + 12,5 = 37,5

25,4 - 0,25 : x            =37,5 -12,5

25,4 - 0,25 : x            = 25

         0,25 : x            = 25,4 -25

         0,25 : x            =       0,4

                  x            = 0,25;0,4

                  x            =   0,625

b) \(3\frac{1}{8}:\left(\frac{2}{5}-x\right)\times\frac{8}{25}=3\)

\(3,125:\left(0,4-x\right)\times0,32=3\)

\(3,125:\left(0,4-x\right)=3:0,32\)

\(3,125:\left(0,4-x\right)=9,375\)

\(0,4-x=3,125:9,375\)

\(0,4-x=\frac{1}{3}\)

\(x=0,4-\frac{1}{3}\)

\(x=\frac{1}{15}\)

12 tháng 5 2016

\(\frac{1}{2}:\frac{3}{7}+1\frac{1}{2}\cdot1\frac{2}{3}:x=1.\Rightarrow\frac{7}{6}+\frac{5}{2}:x=1\Rightarrow\frac{5}{2}:x=1-\frac{7}{6}=-\frac{1}{6}\Rightarrow x=-\frac{1}{6}:\frac{5}{2}=-\frac{1}{15}\)

14 tháng 5 2017

\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
 

14 tháng 5 2017

A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)

\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)

\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)

\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=10x\left(1-\frac{1}{101}\right)\)

\(=10x\frac{100}{101}\)

\(=\frac{1000}{101}\)

20 tháng 5 2017

\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}\)

\(A=\frac{1}{100}.\left(1-\frac{1}{101}\right)+\frac{1}{100}.\left(\frac{1}{2}-\frac{1}{102}\right)+\frac{1}{100}.\left(\frac{1}{3}-\frac{1}{103}\right)+...+\frac{1}{100}.\left(\frac{1}{25}-\frac{1}{125}\right)\)

\(A=\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)\)

\(A=\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)\)

\(B=\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}\)

\(B=\frac{1}{25}.\left(1-\frac{1}{26}\right)+\frac{1}{25}.\left(\frac{1}{2}-\frac{1}{27}\right)+\frac{1}{25}.\left(\frac{1}{3}-\frac{1}{28}\right)+...+\frac{1}{25}.\left(\frac{1}{100}-\frac{1}{125}\right)\)

\(B=\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)\)

\(B=\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)\)

\(B=\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)\)\(B=\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)\)

Ta thấy biểu thức trong ngoặc của hai vế A và B giống nhau

Vậy A : B = \(\frac{1}{100}:\frac{1}{25}=\frac{1}{4}\)

20 tháng 5 2017

\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}\)

\(\Rightarrow A=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{24.25}\right)+\left(\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{124.125}\right)\)

\(A=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{24}-\frac{1}{25}\right)+\left(\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{124}-\frac{1}{125}\right)\)

\(A=\left(1-\frac{1}{25}\right)+\left(\frac{1}{101}-\frac{1}{125}\right)\)

\(A=\frac{24}{25}+\frac{24}{12625}\)

Bạn tự tính luôn nha trog máy tính của mình là : 0,961... ( k làm thành phân số được )