K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 7 2018
E = sin^6 + cos^6 + 3sin^2.cos^2
= (sin^2 + cos^2)(sin^4 - sin^2.cos^2 + cos^4) + 3 sin^2.cos^2
= (sin^2 + cos^2)^2 - 3sin^2.cos^2 + 3sin^2.cos^2
= 1
DH
3
PT
30 tháng 9 2018
ta có:\(\sin\alpha=\cos\beta\)(ĐL trong tam giác vuông sin góc này bằng cos góc kia)
mà theo đề bài thì \(\sin\alpha=\cos\alpha\Rightarrow\alpha=45^o\)
BM
1
KN
30 tháng 10 2020
\(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\sqrt{5}\Rightarrow\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}\)
Đặt \(\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}=k\)thì \(\cos\alpha=\sqrt{5}k,\sin\alpha=k\)
Vậy \(A=\frac{\sin^2a+\cos^2\alpha}{\sin\alpha.\cos\alpha}=\frac{k^2+5k^2}{\sqrt{5}k.k}=\frac{6}{\sqrt{5}}\)
\(\sin a.\cos a=\frac{\sqrt{3}}{4}\)
=> \(\sin a=\frac{\sqrt{3}}{4\cos a}\)
=> \(\frac{3}{16\cos^2a}+\cos^2a=1\)
=> \(16\cos^4a-16\cos^2a-3=0\)
=> \(\left[\begin{array}{nghiempt}\cos^2a=\frac{2+\sqrt{7}}{4}\Rightarrow\cos a=\pm\frac{\sqrt{2+\sqrt{7}}}{2}\\\cos^2a=\frac{2-\sqrt{7}}{4}\end{array}\right.\)