K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

a) x3 + 127127 = x3  + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)

=(x + 1313)(x2 – 1313x + 1919)

b) (a + b)3 – (a - b)3    

= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]

= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)

= 2b . (3a3 + b2)

c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]

= (a + b + a – b)(a2 + 2ab + b2 – a2  +b+ a2 – 2ab + b2]

= 2a . (a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y  +3 . 2x . y + y3 = (2x + y)3

e) - x+ 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3

18 tháng 7 2019

\(a) x^4 + ax^2 + b \\ = x^4 + 2x^2 + b + ax^2 - 2x^2\\ = (x^2 + 1)^2 - x^2 + x^2(a + b)\\ = (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\ = (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1). \)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0

\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\ \Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\ = (x^2 + 3x - 10)(cx + d) \\ = ax^3 + bx^2 + 5x - 50\\ = cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)

\(b = d + 3c\\ 5 = 3d - 10c\\ -50 = -10d\)
Vậy \(a = 1, b = 8\)

\(d)f(x)=ax^3+bx-24\)

Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)

f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)

Giải ra ta được a = 2; b = -26

8 tháng 8 2019

a,gọi f(x)=x3+ax+b

theo đb có: f(x)=(x+1)t(x)+7

=> f(-1)=7=> -1-a+b=7<=>b-a=8(1)

f(x)=(x-3)h(x)-3=> f(3)=-3=> 27+3a+b=3<=> 3a+b=-24(2)

từ (1);(2)=> a=-8;b=0

20 tháng 3 2017

a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)

Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:

\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)

<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5

20 tháng 3 2017

lười quá ~~

bài 1

vì đa thức bị chia bậc 2, đa thức chia bậc nhất

=> đa thức thương sẽ có dạng bx+c

theo đề ta có

\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)

vậy a = -5

bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé