Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)
\(\left(b+3\right)^4\ge0\left(\forall b\right)\)
\(\left(5c-6\right)^2\ge0\left(\forall c\right)\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)
Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)
=> Vô lí
=> Phương trình vô nghiệm
b;c Tương tự
Ta có:
a)\(\left(x+1\right)^2\left(y^2-6\right)=0\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\\left(y^2-6\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\y^2-6=0\Rightarrow y^2=6\Rightarrow\left[{}\begin{matrix}y=\sqrt{6}\\y=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)
b) \(x^2-12x+7>7\Rightarrow x^2-12x>0\)
\(\Rightarrow x\left(x-12\right)>0\Rightarrow\left[{}\begin{matrix}x>12\\x< 0\end{matrix}\right.\)