\(\in\) N biết:

\(\frac{30}{43}\) = <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

Có: \(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

=>a=1; b=2 ; c=3 ; d=4

31 tháng 7 2016

\(\frac{30}{43}=\frac{1}{\frac{43}{30}}\)

     \(=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)

     \(=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

Vậy a = 1 ; b = 2 ; c = 3 ; d = 4

31 tháng 7 2016

 1)

a. Để B là phân số thì:\(n-3\ne0\Leftrightarrow n\ne3\)

b. Có: \(B=\frac{n-8}{n-3}=\frac{n-3-5}{n-3}=1-\frac{5}{n-3}\)

Để B là số nguyên thì \(n-3\inƯ\left(5\right)\)

Mà: Ư(5)={1;-1;5;-5}

=> n-3={1;-1;5;-5}

Ta có bảng sau:

n-31-15-5
n428-2

 Vậy n={-2;2;4;8} thì B nguyên

 

 

15 tháng 8 2016

Thiếu đề

hik như x=2010

3 tháng 1 2017

Ta có :

(x+1)/2009 + (x+2)/2008 = (x+3)/2007 + (x+4)/2006
<=> (x+1)/2009 + 1 + (x+2)/2008 + 1 = (x+3)/2007 +1 + (x+4)/2006 + 1
<=> (x+2010)/2009 + (x+2010)/2008 = (x+2010)/2007 + (x+2010)/2006
<=> (x + 2010).[ 1/2009 + 1/2008 - 1/2007 - 1/2006 ] = 0
<=> x = -2010

10 tháng 5 2016

Ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

\(Q=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+10}\)

\(Q=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+....+\frac{1}{\frac{10.\left(10+1\right)}{2}}\)

\(Q=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{10.11}{2}}\)

\(Q=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)

\(\frac{1}{2}Q=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)

\(\frac{1}{2}Q=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

=>\(Q=\frac{9}{22}.2=\frac{9}{11}\)

10 tháng 5 2016

 

\(Q=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\\ \Rightarrow\frac{1}{2}Q=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)

Tiếp theo tự tính nhéhahaToán lớp 6

1 tháng 8 2016

\(=\frac{\frac{5}{11.2}+\frac{3}{13}-\frac{1}{2}}{\frac{4}{13}-\frac{1}{11}+\frac{3}{2}}=\frac{5}{\frac{2}{4}}=\frac{5}{\frac{1}{2}}\)

1 tháng 8 2016

bn giải bài rõ ràng hưn giùm mk cái nha

a: \(=\dfrac{17}{4}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}-\dfrac{5}{2}+\dfrac{7}{2}\)

\(=\dfrac{35}{8}+\dfrac{8}{8}-\dfrac{37}{100}-\dfrac{128}{100}\)

\(=\dfrac{43}{8}-\dfrac{165}{100}=\dfrac{149}{40}\)

b: \(=\left(\dfrac{22\cdot26+3\cdot10-65}{130}\right):\left(\dfrac{4\cdot22-2\cdot26+3\cdot143}{286}\right)\)

\(=\dfrac{537}{130}\cdot\dfrac{286}{465}=\dfrac{1969}{775}\)

7 tháng 2 2017

Theo đề bài ta có :

\(A=\frac{n+1}{n-1}=\frac{1}{2}\)

\(\Leftrightarrow2\left(n+1\right)=n-1\)

\(\Leftrightarrow2n+2=n-1\)

\(\Leftrightarrow2n-n=-1-2\)

\(\Rightarrow n=-3\)

Vậy với n = - 3 thì A = \(\frac{1}{2}\)

7 tháng 2 2017

ĐKXĐ: \(n\ne1\)

\(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=1+\frac{2}{n-1}\)

\(A=\frac{1}{2}\)

\(\Rightarrow\)\(1+\frac{2}{n-1}=\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{n-1}=-\frac{1}{2}\)

\(\Leftrightarrow n-1=-4\)

\(\Leftrightarrow n=-3\) (t/m ĐKXĐ)

30 tháng 8 2016

2. \(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995.\left(1993+1\right)-1}{1993.1995+1994}=\frac{1995.1993+1995-1}{1993.1995+1994}=\frac{1995.1993+1994}{1993.1995+1994}\)

7 tháng 10 2016

1. \(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}\) 

\(=\frac{7-3}{3.7}+\frac{12-7}{7.12}+\frac{13-12}{12.13}+\frac{23-20}{20.23}\) 

\(=\left[\frac{7}{3.7}-\frac{3}{3.7}\right]+\left[\frac{12}{7.12}-\frac{7}{7.12}\right]+\left[\frac{13}{12.13}-\frac{12}{12.13}\right]+\left[\frac{20}{13.20}-\frac{13}{13.20}\right]+\left[\frac{23}{20.23}-\frac{20}{20.23}\right]\) \(=\left[\frac{1}{3}-\frac{1}{7}\right]+\left[\frac{1}{7}-\frac{1}{12}\right]+\left[\frac{1}{12}-\frac{1}{13}\right]+\left[\frac{1}{13}-\frac{1}{20}\right]+\left[\frac{1}{20}-\frac{1}{23}\right]\) \(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}\) \(=\frac{1}{3}-\frac{1}{23}\\ =\frac{20}{69}\)