K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

cách giải chi tiết nè bạn j đó ơi
ta có: x/2=y/3;y/4=z/5 và x+y-z=10
x/2=y/3=>x/8=y/12 1
y/4=z/5=>y/12=z/15 2
Từ 1, 2=> x/8=y/12=z/15
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
Ta có:
x/8=2=>x=2.8=16
y/12=2=.=>y=2.12=24
z/15=2=>z=2.15=30
Vậy x=16;y=24;z=30
(Bài này mình chắc đúng luôn)

10 tháng 7 2018

Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vax+y-z=10\)0

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left[1\right]\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left[2\right]\)

\(Tu1va2\Rightarrow:\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Leftrightarrow\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=24\)

\(\frac{z}{15}=2\Rightarrow z=30.Vayx=16;y=24;z=30\)

3 tháng 9 2016

mình sẽ đơn giản cách giải ấy cho cậu

cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5

(x + y + z)2 = 9

chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2

vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3

với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)

tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)

Và trường hợp còn lại (x + y + z) = -3  cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được

x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)

vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình

3 tháng 9 2016

Sory mk nam nay moi len lop 6 

16 tháng 9 2017

Phan Đăng Nguyên bn lần lượt cộng 2 vế lại với nhau ta được (x+y+z)(x+y+z)=-5+9+5 (x+y+z)2 = 9

9=32 hoặc 9=(-3)2

Vậy có 2 trường hợp hoặc (x+y+z)=-5=>x = \(\frac{5}{3}\)

Tương tự, thay vào (x+y+z)=3 vào 2 biểu thức còn lại ta sẽ đc y=3, z=\(\frac{5}{3}\)

Trường hợp còn lại (x+y+z)=-3 thay lần lượt vào 3 biểu thứ trên, ta sẽ suy ra đc \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)

Vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\)

16 tháng 9 2017

tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5

12 tháng 7 2015

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

suy ra: \(\frac{x}{8}=2\Rightarrow x=2.8=16\)

\(\frac{y}{12}=2\Rightarrow y=2.12=24\)

\(\frac{z}{15}=2\Rightarrow z=2.15=30\)

1 tháng 7 2021

Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

1 tháng 7 2021

\(\frac{x}{2}=\frac{y}{3}\)     \(\left(\text{*}\right)\)

\(\frac{y}{4}=\frac{z}{5}\)       \(\left(\text{*}\text{*}\right)\)

\(x+y-z=10\)     \(\left(\text{*}\text{*}\text{*}\right)\)

\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)

\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)  

Cả (*) và (**) thế vào (***)

\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)

\(\Leftrightarrow x=16;z=30\)

Vậy ...

8 tháng 6 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) và (2) suy ra\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow x=2.8=16\)

\(y=2.12=24\)

\(z=2.15=30\)

Vậy x=16;y=24;z=30

5 tháng 8 2017

ta có x/2=x/8 và y/3=y12

        y/4=y/12 và z/5=z/15

theo tính chất của dãy tỉ số bằng nhau

x/8 = y/12 = z/15 va x+y-z =10

 x/8 = y/12 = z/15 = x+y-z/8+12-15 = 10/5 =2

=> x=8x2=16

     y=12x2=24

    z=15x2=30