Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. => 1 trong 2 số phải là 1(tích của 2 số tự nhiên khác 1 là hợp số)
=> số thứ 2 là 2
Gọi hai số đó là a; b
+) a.b là số nguyên tố => 1 trong hai số bằng 1; số còn lại là số nguyên tổ. Coi a = 1 ; b là số nguyên tố
+) a+ b = 1 + b là số nguyên tố => b chẵn => b = 2
Vậy hai số đó là 1; 2
Kí hiệu hai số cần tìm là a và b. Ta thấy
a . b có ít nhất 4 ước là :
- 1; a; b và chính nó.
=> Tích hai số ko thể là số nguyên tố.
=> Không tìm được hai số tự nhiên thoả mãn yêu cầu đề bài.
Tích 2 số là số nguyên tố
=> Một số phải bằng 1 (vì cả hai số khác 1 thì tích là hợp số)
=> Số thứ hai là số nguyên tố
Số 1 mà cộng với một số nguyên tố ra số nguyên tố
=> Số đó là số 2 (vì nếu số thứ hai cũng là số nguyên tố lớn hơn 2 công 1 ra số chẵn)
Vậy 2 số đó là 1 & 2
Tích 2 số là số nguyên tố
=> Một số phải bằng 1 (vì cả hai số khác 1 thì tích là hợp số)
=> Số thứ hai là số nguyên tố
Số 1 mà cộng với một số nguyên tố ra số nguyên tố
=> Số đó là số 2 (vì nếu số thứ hai cũng là số nguyên tố lớn hơn 2 công 1 ra số chẵn)
Vậy 2 số đó là 1 & 2
Tích 2 số là số nguyên tố
=> + Một số phải bằng 1 ( vì cả hai số khác 1 thì tích là hợp số )
+ Số thứ hai là nguyên tố .
Số 1 mà cộng với số nguyên toos thì ra số nguyên tố .
=> Số đó là 2 ( vì số thứ hai cũng là nguyên tố lớn hơn 2 cộng 1 ra số chẵn )
Vậy 2 số đó là 1 và 2
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài