K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

gọi hai số cần tìm là \(a\)\(b\) với \(\left(a>0;b>0;a\ne b\right)\)

theo đầu bài ta có:

tổng là \(\left(a+b\right)\) ;hiệu là \(\left(a-b\right)\) ;tích là \(a.b\)

chúng lần lượt tỉ lệ nghịch với 35,210 và 12 nên ta có:

\(35.\left(a+b\right)=210\left(a-b\right)=12ab\)

chia các tích cho BCNN của các số 35;210 và 12 ta được:

\(\frac{35.\left(a+b\right)}{420}=\frac{210\left(a-b\right)}{420}=\frac{12ab}{420}\Leftrightarrow\frac{a+b}{12}=\frac{a-b}{2}=\frac{ab}{35}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{12}=\frac{a-b}{2}=\frac{\left(a+b\right)+\left(a-b\right)}{12+2}=\frac{\left(a+b\right)-\left(a-b\right)}{12-2}\)

\(\frac{a+b}{12}=\frac{a-b}{2}=\frac{a}{7}=\frac{b}{5}\left(2\right)\)

từ (1) và (2) \(\Rightarrow\frac{a.b}{35}=\frac{a}{7}=\frac{b}{5}=\frac{ab}{7b}=\frac{a.b}{5a}\)

\(\Rightarrow7b=35\Rightarrow b=5\)

\(\Rightarrow5a=35\Rightarrow a=7\)

vậy hai số dương cần tìm là 5 và 7

20 tháng 2 2017

\(\frac{1}{x}+\frac{1}{x+1}=\frac{1}{x+2}+\frac{1}{x+3}\)

Điều kiện: \(\left\{\begin{matrix}x\ne0\\x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=-\frac{1}{x+1}+\frac{1}{x+3}\)

\(\Leftrightarrow\frac{2}{x^2+2x}=\frac{2}{-x^2-4x-3}\)

\(\Leftrightarrow x^2+2x+x^2+4x+3=0\)

\(\Leftrightarrow2x^2+6x+3=0\)

\(\Leftrightarrow\left[\begin{matrix}x=\frac{-3+\sqrt{3}}{2}\\x=\frac{-3-\sqrt{3}}{2}\end{matrix}\right.\)

27 tháng 3 2017

mik chưa học đến bài này bn ag

27 tháng 3 2017

hì hìhihi

10 tháng 9 2017

a a' a//a' mk chưa chắc đã đúng :D

12 tháng 3 2017

thiếu đề

1 tháng 2 2017

hé hé bạn mik ớ ngân giới tính rất linh hoạt

P/s : đầu óc bạn thì ko đc linh hoạt bởi tên ngân còn hỏi là trai hay gái

1 tháng 2 2017

nghé z

14 tháng 12 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)

Từ đó:

\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)

\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)

Vậy \(x=2006;y=-2003.\)

6 tháng 2 2017

Yêu cầu của bài là j vậy?

8 tháng 9 2017

2. GTLN

có A= x - |x|

Xét x >= 0 thì A= x - x = 0 (1)

Xét x < 0 thì A=x - (-x) = 2x < 0 (2)

Từ (1) và (2) => A =< 0

Vậy GTLN của A bằng 0 khi x >= 0

Bài1:

\(C=x^2+3\text{|}y-2\text{|}-1\)

Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)

=>\(x^2+3\text{|}y-2\text{|}>=0\)

Hay C>=0 với mọi x;y

Để C=0 thì \(x^2=0\)\(\text{|}y-2\text{|}=0\)

=>\(x=0vày-2=0\)

=>\(x=0và.y=2\)

Vậy....

5 tháng 3 2017

Ta có:

(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)

\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)

Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2

\(\Rightarrow\)b=2.20=40

Vậy b=40

Học tốt!vui

5 tháng 3 2017

Ahihi em chịu ....!limdim

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)