Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
\(=8+3.1+4:\frac{1}{2}\)
\(=8+3+8=19\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.202}{2}-1}{2}=10150\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{20}.\frac{20.21}{2}=1+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=1+\frac{24.19}{2}=229\)
Theo đề ta có:
\(\left(5+\frac{1}{5}-\frac{2}{9}\right)-\left(2-\frac{1}{23}-2\frac{3}{5}+\frac{5}{6}\right)\)\(-\left(8-\frac{2}{3}-\frac{1}{18}\right)\)
= \(5+\)\(\frac{1}{5}-\frac{2}{9}\)-\(2+\frac{1}{23}+2+\frac{3}{5}+\frac{5}{6}-8+\frac{2}{3}-\frac{1}{18}\)
=\(\left(5+2-8\right)+\left(\frac{1}{5}+\frac{3}{5}\right)-\left(\frac{2}{9}-\frac{5}{6}-\frac{2}{3}+\frac{1}{18}\right)+\frac{1}{23}\)
= -1 +\(\frac{4}{5}\)\(-\frac{-11}{9}\)+\(\frac{1}{23}\)
= -1 +\(\frac{4}{5}+\frac{11}{9}+\frac{1}{23}\)
\(\left(5+\frac{1}{5}-\frac{2}{9}\right)-\left(2-\frac{1}{23}-2\frac{3}{5}+\frac{5}{6}\right)-\left(8-\frac{2}{3}-\frac{1}{18}\right)\)
= \(5+\frac{1}{5}-\frac{2}{9}-2+\frac{1}{23}+2+\frac{3}{5}-\frac{5}{6}-8+\frac{2}{3}+\frac{1}{18}\)
= \(\left(5-8\right)+\left(\frac{1}{5}+\frac{3}{5}\right)-\left(\frac{2}{9}-\frac{1}{18}-\frac{2}{3}\right)-\left(2-2\right)+\frac{1}{23}-\frac{5}{6}\)
= \(\left(-3\right)+\frac{4}{5}+\frac{1}{2}+\frac{1}{23}-\frac{5}{6}\)
= \(\left(\left(-3\right)+\frac{4}{5}+\frac{1}{2}-\frac{5}{6}\right)+\frac{1}{23}\)
= \(-\frac{38}{15}+\frac{1}{23}\)
= \(-\frac{859}{345}\)
Ta có :
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{10}\right)\)
\(=\)\(\frac{2-1}{2}.\frac{3-1}{3}.....\frac{10-1}{10}\)
\(=\)\(\frac{1}{2}.\frac{2}{3}.....\frac{9}{10}\)
\(=\)\(\frac{1.2.....9}{2.3.....10}\)
\(=\)\(\frac{2.3.....9}{2.3.....9}.\frac{1}{10}\)
\(=\)\(\frac{1}{10}\)
Vậy \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{10}\right)\)
Chúc bạn học tốt ~
=1/2 . 2/3 ....... 9/10
=1.2.3......9/2.3.4........10
=1/10
Chúc bạn học tốt
a)\(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}\cdot\frac{1}{3}=4+\frac{1}{27}=\frac{108}{27}+\frac{1}{27}=\frac{109}{27}\)
b)\(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[\left(-8\right)\cdot2\right]=8+3-16=-5\)
a/ \(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}:3=5-1+\frac{1}{27}=4+\frac{1}{27}=\frac{109}{27}\)
b/ \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[-8:\frac{1}{2}\right]=11+-16=-5\)
= (-1/2)3-2+1.2.3+1
=1/4.6+1
=3/2+1
=5/2