Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(A=\left(\frac{3}{8}+\frac{-6}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(A=\left(\frac{-3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(A=\left(\frac{-36}{24}+\frac{56}{24}\right):\frac{5}{6}+\frac{1}{2}\)
\(A=\frac{5}{6}:\frac{5}{6}+\frac{1}{2}\)
\(A=\frac{5}{6}\times\frac{6}{5}+\frac{1}{2}\)
\(A=1+\frac{1}{2}\)
\(A=\frac{1}{1}+\frac{1}{2}=\frac{2}{2}+\frac{1}{2}\)
\(A=\frac{3}{2}\)
a. \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-4}{9}+\frac{5}{6}\right):\frac{7}{12}\)
\(=1.\frac{7}{12}:\frac{7}{12}\)
\(=1\)
b.
\(\frac{5}{9}.\frac{8}{11}+\frac{5}{9}.\frac{9}{11}-\frac{5}{9}.\frac{6}{11}\)
\(=\frac{5}{9}.\left(\frac{8}{11}+\frac{9}{11}-\frac{6}{11}\right)\)
\(=\frac{5}{9}.1\)
\(=\frac{5}{9}\)
Tk mk nha!
b) \(=\frac{5}{9}.\left(\frac{8}{11}+\frac{9}{11}-\frac{6}{11}\right)\)
\(=\frac{5}{9}.1\)
\(=\frac{5}{9}\)
m) (\(\frac{-5}{12}\)+\(\frac{6}{11}\))+(\(\frac{7}{17}\)+\(\frac{5}{11}\)+\(\frac{5}{12}\))
= \(\frac{-5}{12}\)+\(\frac{6}{11}\)+\(\frac{7}{17}\)+\(\frac{5}{11}\)+\(\frac{5}{12}\)
= (\(\frac{-5}{12}\)+\(\frac{5}{12}\))+(\(\frac{6}{11}\)+\(\frac{5}{11}\))+\(\frac{7}{17}\)
= 0+1+\(\frac{7}{17}\)
= \(\frac{24}{17}\)
n) (\(\frac{9}{16}\)+\(\frac{8}{-27}\))+(1+\(\frac{7}{16}\)+\(\frac{-19}{27}\))
= \(\frac{9}{16}\)+\(\frac{8}{-27}\)+1+\(\frac{7}{16}\)+\(\frac{-19}{27}\)
= (\(\frac{9}{16}\)+\(\frac{7}{16}\))+(\(\frac{8}{-27}\)+\(\frac{-19}{27}\))+1
= 1+(-1)+1
= 0+1
= 1
o) (6-2\(\frac{4}{5}\)).3\(\frac{1}{8}\)-1\(\frac{3}{5}\):\(\frac{1}{4}\)
= (6-\(\frac{14}{5}\)).\(\frac{25}{8}\)-\(\frac{8}{5}\):\(\frac{1}{4}\)
= \(\frac{16}{5}\).\(\frac{25}{8}\)-\(\frac{8}{5}\):\(\frac{1}{4}\)
= 10-\(\frac{8}{5}\):\(\frac{1}{4}\)
= 10-\(\frac{32}{5}\)
= \(\frac{18}{5}\)
CHÚC BẠN HỌC TỐT
Bài 1:\(A=1-\frac{1}{2}+1-\frac{1}{6}+.......+1-\frac{1}{9900}\)
\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=99-\frac{99}{100}=\frac{9801}{100}\)
Bài 2:\(A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+.........+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+.........+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left(1+\frac{1}{2}+......+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-.......-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left[\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+......+\frac{1}{400}\right)\right]\)(đpcm)
1/
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{9900}\right)\)
\(=\left(1+1+...+1\right)\left(50so\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=50-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=50-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=50-\left(1-\frac{1}{100}\right)=49+\frac{1}{100}=\frac{4901}{100}\)
2/
\(=\frac{1}{299}\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
Ta có :
\(A=100\left(1+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\right)\)
\(A=100\left(1+\frac{6-1}{6}+\frac{12-1}{12}+\frac{20-1}{20}+...+\frac{9900-1}{9900}\right)\)
\(A=100\left(1+\frac{6}{6}-\frac{1}{6}+\frac{12}{12}-\frac{1}{12}+\frac{20}{20}-\frac{1}{20}+...+\frac{9900}{9900}-\frac{1}{9900}\right)\)
\(A=100\left(1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\right)\)
\(\frac{A}{100}=1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{100}\right)\)
Do từ \(2\) đến \(99\) có \(99-2+1=98\) số nên có \(98\) số \(1\) suy ra :
\(\frac{A}{100}=98-\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\frac{A}{100}=98-\frac{49}{100}\)
\(\frac{A}{100}=\frac{9751}{100}\)
\(A=\frac{9751}{100}.100\)
\(A=9751\)
Vậy \(A=9751\)
Chúc bạn học tốt ~