Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(23.94+93.45):(92.10-92)
= ( 8. 94+93.9.5):(81.10-81)
= (8.94+94.5):(810-81)
=[94.(8+5)]:729
=[94.13]:729
=6561.13:729
=6561:729.13
=9.13
=117
Mk nhanh nhat day
(23.94+93.45):(92.10-92)
=(23.94+5.94):(81.10-81)
=[94.(8+5)]:(810-81)
=(6561.13):729
=85296:729
=117
a)31.65+31.35-500
=31.(65+35)-500
=31.100-500
=3100-500
=2600
a) \(\left(2^3.9^4+9^3.45\right):\left(9^2.10-9^2\right)\)
=\(\left(2^3.9^4+9^3.9.5\right):9^2\left(10-1\right)\)
= \(\left(8-9^4+9^4.5\right):9^2.9\)
=\(9^4\left(8-5\right):9^3\)
=\(9^4.3:9^3\)
=\(9^4:9^3.3\)
=\(9.3\)
=\(27\)
\(\frac{3^2.4^2.2^{32}}{11.2^{13}.4^{11}-16^9}=\frac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}=\frac{9.2}{9}=2\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{6^9.2^{10}+6^{10}.2^{10}}=\frac{2^{19}.3^9+3^9.5.2^{18}}{6^9.2^{10}.\left(1+6\right)}=\frac{2^{18}.3^9.\left(2+5\right)}{2^9.3^9.2^{10}.7}=\frac{2^{18}.7}{2^{19}.7}=\frac{1}{2}\)
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1
b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
c,Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)