Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)
\(=\dfrac{3\left(1-x\right)}{\left(x+1\right)^2}:\dfrac{6\left(x^2-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}:\dfrac{6\left(x+1\right)\left(x-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-3\left(x-1\right)\left(x+1\right)}{6\left(x+1\right)^3\left(x-1\right)}=\dfrac{-3\left(x+1\right)}{6\left(x+1\right)\left(x+1\right)^2}=\dfrac{-3}{6\left(x+1\right)^2}=\dfrac{-1}{2\left(x+1\right)^2}\)
b) Bạn có thể viết kiểu latex được không ạ ?
\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=4x\left(x^2-9\right)-x^3+27\)
\(=4x^3-36x-x^3+27\)
\(=3x^3-36x+27\)
\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)
\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)
\(=\left(x+6\right).0\)
\(=0\)
làm như bình thường là đc:
a) ( x + 2 )^3 - x^2 . ( x+ 6 ) - 8
= ( x^3 + 3.x^2.2 +3.x.2^2 + 2^3 ) - ( x^3 + 6x^2 ) - 8
= x^3 + 6x^2 + 12x + 8 - x^3 - 6x^2 - 8
=12x
b) ( x - 2 ) . ( x^2 + 2x + 4 ) - ( x^3 + 2 )
= x^3 - 2^3 - ( x^3 + 2 )
= x^3 - 8 - x^3 - 2
= -6
a) Đơn giản : 3x3y2 : x2 = 3xy2
b) x^5 + 4x^3 - 6x^2 4x^2 1/4x^3 + x +3/2 x^5 4x^3 - 6x^2 4x^3 6x^2 6x^2 0
1.
=x2+2x+1+x2+x-6-4x
=2x2-x-5
2.
=x2+5x-24-x2+12x
=17x-24
dạ mình cảm ơn