Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(1/3/7-2/1/4) . 3/1/3
= -23/28 .3/1/3
= -115/42
b,(2/1/3+3/1/2):(-4/1/6+3/1/7)+7/1/2
= 35/6 : -43/42 +7/1/2
= -245/43 +7/1/2
= 155/86
\(\left(1\frac{3}{7}-2\frac{1}{4}\right).3\frac{1}{3}\)
\(=\left(\frac{10}{7}-\frac{9}{4}\right).\frac{10}{3}\)
\(=-\frac{23}{28}.\frac{10}{3}\)
\(=\frac{-115}{42}\)
A =
A = \(1-\frac{1}{2018}\)
A = \(\frac{2017}{2018}\)
Có :
2.B = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)
2.B = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
2.B = \(1-\frac{1}{2017}\)
2.B = \(\frac{2016}{2017}\)
B = \(\frac{2016}{2017}:2=\frac{1008}{2017}\)
Có :
3.C = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2017.2020}\)
3.C = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2017}-\frac{1}{2020}\)
3.C = \(\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)
C = \(\frac{2019}{2020}:3=\frac{673}{2020}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Ủng hộ mk nha !!! ^_^
Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(Q=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(Q=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{10000}{99.101}\)
\(Q=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{100.100}{99.101}\)
\(Q=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)
\(Q=100.\frac{2}{101}\)
\(Q=\frac{200}{101}\)
\(Q=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(Q=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{10000}{99.101}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{100.100}{99.101}\)
\(Q=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)
\(Q=100.\frac{2}{101}\)
\(Q=\frac{200}{101}\)
2Q = 1-1/3-1/2+1/4+1/3-1/5-1/4+1/6-........+1/97-1/99-1/98+1/100 = 1-1/2-1/99+1/100 = 4949/9900 >> Q = 49499/19800
\(Q=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{99}{100}=\frac{99}{200}\) (không chắc cho lắm :v)
\(\frac{2^{4+6}}{2^{5.2}}-\frac{2^5.3^3.5^3}{2^3.3^3.2^2.5^2}=\frac{2^{10}}{2^{10}}-\frac{2^5.3^3.5^3}{2^5.3^3.5^2}=1-5=-4\)
B = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2015.2017}\)
B = \(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
B = \(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2017}\right)\)
B = \(\frac{1}{2}\left(\frac{2017}{2017}-\frac{1}{2017}\right)\)
B = \(\frac{1}{2}.\frac{2016}{2017}\)
B = \(\frac{1008}{2017}\)
Vậy B = \(\frac{1008}{2017}\)
Chúc bạn học tốt . Có bài gì khó mik sẽ giúp bạn ( Chỉ toán 6 hoặc 7 trở xuống thui đó )
\(B=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{2015\cdot2017}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{2015\cdot2017}\right)\)
\(B=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(B=\frac{1}{2}\left(1-\frac{1}{2017}\right)\)
\(B=\frac{1}{2}\cdot\frac{2016}{2017}\)
\(B=\frac{1008}{2017}\)