Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
4x^3-3x^2 +1 x^2+2x-1 4x 4x^3+8x^2-4x - -11x^2+4x+1 -11 -11x^2-22x+11 - 26x-10
OLM chỉ có phần chụp ảnh cho CTV
Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc
\(\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(4x-1\right)\)
\(=x^2+\frac{1}{2}x-\frac{1}{2}x-\frac{1}{4}\left(4x-1\right)\)
\(=\left(x^2-\frac{1}{4}\right)\left(4x-1\right)\)
\(=4x^3-x^2-x+\frac{1}{4}\)
ta có: (x - 1/2)(x + 1/2)(4x - 1) = 0
=> (x2 - 1/4)(4x - 1) = 0
=> \(\hept{\begin{cases}x^2-\frac{1}{4}=0\\4x-1=0\end{cases}}\)
=> \(\hept{\begin{cases}x^2=\frac{1}{4}\\4x=1\end{cases}}\)
=> \(\hept{\begin{cases}x=\frac{1}{2}hoặc-\frac{1}{2}\\x=\frac{1}{4}\end{cases}}\)
ok nhé!! 364565467567776892512352534534534564654645645645756756
Trả lời:
a, ( x + 1 )2 + ( x - 2 ) ( x + 3 ) - 4x
= x2 + 2x + 1 + x2 + 3x - 2x - 6 - 4x
= 2x2 - x - 5
b, ( x - 2 )2 + ( x + 1 )2 + 2 ( x - 2 ) ( - 1 - x )
= x2 - 4x - 4 + x2 + 2x + 1 + ( 2x - 4 ) ( - 1 - x )
= 2x2 - 2x - 3 - 2x - 2x2 + 4x + 4x
= 4x - 3
a) \(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x\)
\(=\left(x^2+2x+1\right)+\left(x^2+x-6\right)-4x\)
\(=x^2+2x+1+x^2+x-6-4x\)
\(=2x^2-x-5\)
b) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)
\(=\left(x^2-4x+4\right)+\left(x^2+2x+1\right)+\left(2x-4\right)\left(-1-x\right)\)
\(=x^2-4x+4+x^2+2x+1+\left(-2x-2x^2+4+4x\right)\)
\(=x^2-4x+4+x^2+2x+1-2x-2x^2+4+4x\)
\(=9\)
a) 6x3 + 3x2 + 4x + 2
= ( 6x3 + 3x2 ) + ( 4x + 2 )
= 3x2( 2x + 1 ) + 2( 2x + 1 )
= ( 2x + 1 )( 3x2 + 2 )
=> ( 6x3 + 3x2 + 4x + 2 ) : ( 3x2 + 2 ) = 2x + 1
b) 2x3 - 26x - 24
= 2( x3 - 13x - 12 )
= 2( x3 + 4x2 - 4x2 + 3x - 16x - 12 )
= 2[ ( x3 + 4x2 + 3x ) - ( 4x2 + 16x + 12 ) ]
= 2[ x( x2 + 4x + 3 ) - 4( x2 + 4x + 3 ) ]
= 2( x2 + 4x + 3 )( x - 4 )
=> ( 2x3 - 26x - 24 ) : ( x2 + 4x + 3 ) = 2( x - 4 ) = 2x - 8
c) x3 - 7x + 6
= x3 - 3x2 + 3x2 + 2x - 9x - 6
= ( x3 - 3x2 + 2x ) + ( 3x2 - 9x + 6 )
= x( x2 - 3x + 2 ) + 3( x2 - 3x + 2 )
= ( x2 - 3x + 2 )( x + 3 )
=> ( x3 - 7x + 6 ) : ( x + 3 ) = x2 - 3x + 2
a,\(\left(6x^3+3x^2+4x+2\right)\div\left(3x^2+2\right)\)
\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]\div\left(3x^2+2\right)\)
\(=2x+1\)
Lời giải:
$x^2+4x+n=(x^2-2x)+(6x-12)+12+n=x(x-2)+6(x-2)+12+n$
$=(x-2)(x+6)+12+n$
Vậy $x^2+4x+n$ chia $x-2$ được thương là $x+6$ và dư $12+n$