Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)=\frac{1}{2}\left(1-\frac{1}{21}\right)=\frac{1}{2}.\frac{20}{21}=\frac{10}{21}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)\(+...+\frac{1}{19.21}\)
=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{19.21}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{21}\right)\)
=\(\frac{1}{2}.\frac{20}{21}\)
=\(\frac{20}{42}=\frac{10}{21}\)
Tính S = 1.3/3.5 + 2.4/5.7 + 3.5/7.9 + ... + ( n-1)( n+1) / (2n-1)(2n+1) + ... + 1002.1004/2005.2007
\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)
\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)
\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)
\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)
\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)
\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)
\(\Rightarrow S=125,4372197\)
\(\)
Bài này nếu dùng hằng đẳng thức lớp 8 thì hay hơn.Thôi cứ làm vầy nhé:
1+1/1.3=2^2/1.3 ; 1+1/2.4=3^2/2.4 ; 1+1/3.5=4^2/3.5 ; ......;1+1/2007.2009=2008^2/2007.2009 Thấy quy luật rồi chứ!
ta được A=(2^2.3^2.4^2.....2008^2)/1.3.2.4.3.5.4.6.5.7...2007.2009 Chú ý quan sát và sắp xếp
để giản ước hết.
=(2^2.3^2.4^2....2008^2)/(1.2.3.4.5.6....2007.3.4.5.6....2007.2008.2009) Chuẩn đó
=(2^2.3^2.4^2....2008^2)/(2.3^2.4^2.5^2....2007^2.2008.2009) Viết ra nháp thì dễ nhìn hơn
=2^2.2008^2/2.2008.2009=2.2008/2009 Tựbấm máy và nhớ TICK đó.
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{8.10}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\)
\(2A=1-\frac{1}{10}\)
\(2A=\frac{9}{10}\)
\(A=\frac{9}{10}:2=\frac{9}{20}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{8.10}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}...+\frac{1}{8}-\frac{1}{10}\right)\)
( chắc chắn có số trái dấu ở phía sau, nên còn lại như sau)
=\(\frac{1}{2}\left(1-\frac{1}{10}\right)=\frac{1}{2}.\frac{9}{10}=\frac{9}{20}\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....+\left(1+\frac{1}{99.101}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(=\frac{2.3.4.....100}{1.2.3.....99}.\frac{2.3.4.....100}{3.4.5.....101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)