Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)
b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)
c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)
\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)
d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)
\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)
4x^3-3x^2 +1 x^2+2x-1 4x 4x^3+8x^2-4x - -11x^2+4x+1 -11 -11x^2-22x+11 - 26x-10
OLM chỉ có phần chụp ảnh cho CTV
Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc
b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)
=> đa thức dư trong phép chia là 2x+1
\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)
\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)
\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)
=> đa thức dư trong phép chia là 9
p/s: t mới lớp 7_sai sót mong bỏ qua :>
a) ( 3x - 2 )( 4x + 5 ) - 6x( 2x - 1 )
= 12x2 + 7x - 10 - 12x2 + 6x
= 13x - 10
b) ( 2x - 5 )2 - 4( x + 3 )( x - 3 )
= 4x2 - 20x + 25 - 4( x2 - 9 )
= 4x2 - 20x + 25 - 4x2 + 36
= 61 - 20x
c) 2x3 - 5x2 + 7x - 6
= 2x3 - 3x2 - 2x2 + 3x + 4x - 6
= x2( 2x - 3 ) - x( 2x - 3 ) + 2( 2x - 3 )
= ( 2x - 3 )( x2 - x + 2 )
=> ( 2x3 - 5x2 + 7x - 6 ) : ( 2x - 3 ) = x2 - x + 2
a, (3x - 2 ) (4x + 5) - 6x (2x -1) = ( 7x + 15x -8x - 10 ) - ( 12x2 -6x ) = 7x2 + 15x - 8x -10 -12x2 + 6x = -5x2 + x - 10
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(=\left(3x^4-3x^3+x^3-x^2+8x^2-8x+9x-9\right):\left(x-1\right)\\ =\left(x-1\right)\left(3x^3+x^2+8x+9\right):\left(x-1\right)\\ =3x^3+x^2+8x+9\)