Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+4+42+43+44+........+42015
4A=4(A=1+4+42+43+44+........+42015)
4A=4+42+43+44+45+........+42016
4A-A=(4+42+43+44+45+........+42016)-(1+4+42+43+44+........+42015)
3A=42016-1
A=(42016-1):3
Chia đề bài thành 2 phần như sau:
Phần thứ nhất: Chứng tỏ B chia hết cho 4. Ta có:
\(B=3+3^2+3^3+3^4+3^5+...+3^{2015}+3^{2016}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(B=\left(3\cdot1+3.3\right)+\left(3^3\cdot1+3^3\cdot3\right)+\left(3^5\cdot1+3^5\cdot3\right)+...+\left(3^{2015}\cdot1+3^{2015}\cdot3\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+...+3^{2015}\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{2015}\cdot4\)
\(B=4\left(3+3^3+3^5+...+3^{2015}\right)\)
Do B có một thừa số là 4 nên B chia hết cho 4. Đã chứng minh được phần thứ nhất.
Phần thứ hai: Chứng tỏ B chia hết cho 13. Ta có:
\(B=3+3^2+3^3+3^4+3^5+...+3^{2015}+3^{2016}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(B=\left(3\cdot1+3\cdot3+3\cdot9\right)+\left(3^4\cdot1+3^4\cdot3+3^4\cdot9\right)+...+\left(3^{2014}\cdot1+3^{2014}\cdot3+3^{2014}\cdot9\right)\)
\(B=3\left(1+3+9\right)+3^4\left(1+3+9\right)+...+3^{2014}\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13\)
\(B=13\left(3+3^4+...+3^{2014}\right)\)
Do B có thừa số 13 nên B chia hết cho 13. Phần thứ hai đã được chứng minh.
Qua hai phần trên, ta kết luận: B chia hết cho 4 và 13.
B = 3+3^2+3^3+3^4+..+3^2015+3^2016
=>B=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^2015+3^2016)
=>B=12+3^2(3+3^2)+3^4+(3+3^2)+...+3^2014(3+3^2)
=>B=12+3^2.12+3^4.12+...+3^2014.12
=>B=12(1+3^2+3^4+...+3^2014)
=>?B=4.3.(1+3^2+3^4+...+3^2014)=>B chia hết cho 4
B=3+3^2+3^3+3^4+...+3^2015+3^2016
=>B=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)+...+(3^2014+3^2015+3^2016)
=>B=39+3^3(3+3^2+3^3)+3^3(3+3^2+3^3)+3^6(3+3^2+3^3)+...+3^2013(3+3^2+3^3)
=>B=39+3^3.39+3^6.39+...+3^2013.39
=>B=39(1+3^3+3^6+...+3^2013)
=>b=13.3.(1+3^3+3^6+....+3^2013)=>B chia hết cho 13
1,\(A=\)\(1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=\)\(2^{2016}-1\)
~~~Hok tốt~~~
2,\(B=3^{11}+3^{12}+3^{13}+...+3^{101}\)
\(\Rightarrow3B=3^{12}+3^{13}+3^{14}+...+3^{102}\)
\(\Rightarrow3B-B=\left(3^{12}+3^{13}+3^{14}+...+3^{102}\right)-\left(3^{11}+3^{12}+3^{13}+...+3^{101}\right)\)
\(\Rightarrow2B=3^{102}-3^{11}\)
\(\Rightarrow B=\frac{3^{102}-3^{11}}{2}\)
~~~Hok tốt~~~
Đặt A=3-32+33-34+...+32015-32016
3A=32-33+34-35+...+32016-32017
3A-3=-(3-32+33-34+...+32015-32016)-32017
3A-3=A-32017
3A-A=-32017+3
2A=-32017+3
A=(-32017+3)/2
Vậy 3-32+33-34+...+32015-32016=(-32017+3)/2
a) Ta có: A = 1 + 3 + 32 + 33 + ... + 32015
A = (1 + 3 + 32 + 33 + 34) + ... + (32011 + 32012 + 32013 + 32014 + 32015)
A = 40 + ... + 32011(1 + 3 + 32 + 33 + 34)
A = 40 + ... + 32011.40
A = 40(1 + ... + 32011
A = 5.8(1 + ... + 32011) \(⋮\)5
b) B = 2 + 22 + 23 + ... + 22016
B = (2 + 22 + 23 + 24) + ...+ (22013 + 22014 + 22015 + 22016)
B = 2(1 + 2 + 22 + 23) + ... + 22013(1 + 2 + 22 + 23)
B = 2.15 + ... + 22013. 15
B = (2 + ... + 22013) .15 \(⋮\)15
A = 3 + 32 + 33 + 34 +..... + 32015 + 32016
= (3 + 32 + 33) + (34+ 35 + 36 ) +.....+ (32014 + 32015 + 32016)
= 3(1 + 3 + 32) + 34(1 + 3 + 32) + .....+ 32014(1 + 3 + 32)
= 13(3 + 34 + ....+ 32014) \(⋮13\)
A = 3 + 32 + 33 + 34 +..... + 32015 + 32016
= (3 + 32) + (33 + 34) + .... + (32015 + 32016)
= 3(1 + 3) + 33(1 + 3) + .... + 32015(1 + 3)
= 4(3 + 33 + .... + 32015) \(⋮4\)
a) 85 - ( 3 . 52 - 4 . 32 )
= 85 - ( 3 . 25 - 4 . 9 )
= 85 - ( 75 - 36 )
= 85 - 39
= 46
b) 9 . 23 - ( 711 : 72 + 12015 + 20160 )
= 72 - ( 79 + 12015 + 0 )
= 72 - 40353608
= - 40353536
c) 24 : { 390 : [ 500 - ( 53 + 49 . 5 )]}
= 24 : [ 390 : ( 500 - 370 ) ]
= 24 : ( 390 : 130 )
= 24 : 3
= 8
d) 2 + 4 + 6 + ... + 1000
Có số số hạng là:
( 1000 - 2 ) : 2 + 1 = 500 ( số )
Tổng là:
( 1000 + 2 ) . 500 : 2 = 250500
\(A=4+4^2+4^3+...+4^{2015}\)
\(4A=4\left(4+4^2+4^3+...+4^{2015}\right)\)
\(4A=4^2+4^3+4^4+...+4^{2016}\)
\(4A-A=\left(4^2+4^3+..+4^{2016}\right)-\left(4+4^2+...+4^{2015}\right)\)
\(3A=4^{2016}-4\)
\(A=\frac{4^{2016}-4}{3}\)
Đề câu b hơi có vấn đề, hãy xem lại!!!
A=4+42+...+42015
4A=42+43+...+42015+42016
-
A=4+42+...+42015
3A=42016-4
A=42016-4/3