K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

\(M=\frac{1.3.5...2011.2013}{1008.1009.1010...2013.2014}\)

\(M=\frac{1.2.3.4.5.6...2011.2012.2013.2014}{\left(2.4.6...2014\right).1008.1009.1010....2013.2014}\)

\(M=\frac{1.2.3.4.5.6...2011.2012.2013.2014}{2^{1007}.\left(1.2.3...1007\right).1008.1009.1010...2013.2014}\)

\(M=\frac{1}{2^{1007}}\)

30 tháng 4 2018

https://hoc24.vn/hoi-dap/question/598367.html

11 tháng 3 2020

c,

Tổng P có số số hạng là

   (113-2):3+1=38(số)

Có số cặp là

    38:2=19(cặp)

Ta có: P=2-5+8-11+14-17+...+110-113

= (2-5)+(8-11)+(14-17)+...+(110-113)

= (-3)+(-3)+(-3)+...+(-3)

= (-3).19

= -57

18 tháng 5 2018

C = \(\frac{1.3.5.......2011.2013}{1008.1009......2013.2014}\)

C =  \(\frac{1.2.3.4.5......2013.2014}{\left(2.4.6....2012.2014\right).\left(1008.1009.....2014\right)}\)

C = \(\frac{1.2.3.......2013.2014}{2^{1007}.\left(1.2.3.4.5.....1007\right).1008.1009....2014}\)

C = \(\frac{1.2.3.4.5.......2014}{2^{1007}.1.2.3.4.5.......2014}\)

C = \(\frac{1}{2^{1007}}\)

2 tháng 8 2015

\(2015=5.13.31\)

Ta có: \(1.2.....1007=1.2...5....13.....31...1007\text{ chia hết cho }5.13.31=2015\)

\(1008.1009.....2004=1008....\left(1010\right)....\left(1014\right)...\left(1023\right)....2004\)

\(=1008....\left(5.202\right)....\left(13.78\right)....\left(31.33\right)...2004\text{ chia hết cho }5.13.33=2015\)

Do đó tổng 2 số trên chia hết cho 2015.

27 tháng 6 2018

Gọi biểu thức là \(A\). Ta có :

\(A=\dfrac{3}{1.2.3}+\dfrac{5}{2.3.4}+\dfrac{7}{3.4.5}+...+\dfrac{2017}{1008.1009.1010}\)

\(A=\left(\dfrac{1.2}{1.2.3}+\dfrac{2.2}{2.3.4}+\dfrac{3.2}{3.4.5}+...+\dfrac{1008.2}{1008.1009.1010}\right)+\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{1008.1009.1010}\right)\)\(A=\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{1009.1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{1008.1009}-\dfrac{1}{1009.1010}\right)\)

\(A=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{1009}-\dfrac{1}{1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{1009.1010}\right)\)

\(A< 2.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{2}=1+\dfrac{1}{4}=\dfrac{5}{4}\)

2 tháng 7 2017

\(\dfrac{1.3.5+2.6.10+4.12.20+7.21.35}{1.5.7+2.10.14+4.20.28+7.35.49}\)

\(=\dfrac{1.3.5+2^3.1.3.5+2^6.1.3.5+7^3.1.3.5}{1.5.7+2^3.1.5.7+2^6.1.5.7+7^3.1.5.7}\)

\(=\dfrac{1.3.5\left(1+2^3+2^6+7^3\right)}{1.5.7\left(1+2^3+2^6+7^3\right)}\)

\(=\dfrac{1.3.5}{1.5.7}\)

\(=\dfrac{3}{7}\)

2 tháng 7 2017

Ta có : \(\dfrac{1.3.5+2.6.10+4.12.20 +7.21.35 }{1.5.7+2.10.14+4.20.28+7.35.49}\)

\(=\dfrac{1.3.5+1.2.3.2.5.2+1.4.3.4.5.4+1.7.3.7.5.7}{1.5.7+1.2.5.2.7.2+1.4.5.4.7.4+1.7.5.7.7.7}\)

\(=\dfrac{1.\left(1.3.5\right)+2.\left(1.3.5\right)+4.\left(1.3.5\right)+7.\left(1.3.5\right)}{1.\left(1.5.7\right)+2.\left(1.5.7\right)+4.\left(1.5.7\right)+7.\left(1.5.7\right)}\)

\(=\dfrac{1.3.5.\left(1+2+4+7\right)}{1.5.7.\left(1+2+4+7\right)}\)

\(=\dfrac{3}{7}\)