Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M+N-P
\(=7a^2-2a+1-a^2+4\)
\(=6a^2-2a+5\)
b: \(=2y-x-2x+y+y+3x-5y+x\)
\(=-3x+3y-4y+4x=x-y\)
\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)
c: \(=\left[{}\begin{matrix}5x-3-2x+1=3x-2\left(x>=\dfrac{1}{2}\right)\\5x-3+2x-1=7x-4\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
a: \(M+N-P=2a^2-3a+1+5a^2+a-a^2+4=6a^2-2a+5\)
b: \(=2y-x-\left\{2x-y-\left[3x+y-5y+x\right]\right\}\)
\(=2y-x-\left\{2x-y-\left[4x-4y\right]\right\}\)
\(=2y-x-\left\{2x-y-4x+4y\right\}\)
\(=2y-x-\left[-2x+3y\right]\)
\(=-x+2y+2x-3y=x-y=\left(a-b\right)^2-\left(a-b\right)^2\)
=4ab
c: TH1: x>=1/2
A=5x-3-2x+1=3x-2
TH2: x<1/2
A=5x-3+2x-1=7x-4
143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)
\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)
\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)
\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)
b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)
\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)
\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)
Rút gọn các đa thức đồng dạng, ta có kết quả:
\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)
Kết quả đã được xếp theo lũy thừa giảm dần của x
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
tách sai rồi bạn ơi
phải là
\(=\dfrac{1}{2}x^2y.\left(-4\right)x^2y^4+3x^2y^4.x^2y^2\)
=\(2x^4y^5+3x^4y^5\)
=\(5x^4y^5\)
\(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+2x^2y^3.\left(x^2y^2\right)\)
\(=\dfrac{1}{2}x^2y.\left(-2\right)x^2y^4+2x^4y^5\)
\(=\left(-1\right)x^4.y^5+2x^4y^5\)
\(=x^4y^5\)
Lại có : \(\left(x-2\right)^{18}+\left|y+1\right|=0\)
Mà \(\left\{{}\begin{matrix}\left(x-2\right)^{18}\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{18}=0\\\left|y+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Mà \(A=x^4y^5\)
\(\Leftrightarrow A=2^4.\left(-1\right)^5\)
\(\Leftrightarrow A=-16\)
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
\(A=2y-x-\left\{2x-y-\left[y+3x-\left(5y-x\right)\right]\right\}\)
\(=2y-x-\left\{2x-y-\left[y+3x-5y+x\right]\right\}\)
\(=2y-x-\left\{2x-y-y-3x+5y-x\right\}\)
\(=2y-x-2x+y+y+3x-5y+x\)
\(=\left(2y+y+y-5y\right)+\left(-x-2x+3x+x\right)\)
= \(-y+x\)
Thay \(x=a^2+2ab+b^2,y=a^2-2ab+b^2\) vào đa thức -y + x :
\(-\left(a^2-2ab+b^2\right)+\left(a^2+2ab+b^2\right)\)
\(=-a^2+2ab-b^2+a^2+2ab+b^2\)
\(=\left(-a^2+a^2\right)+\left(2ab+2ab\right)+\left(-b^2+b^2\right)\)
= 4ab
\(A=2y-x-\left\{2x-y-\left[y+3x-\left(5y-x\right)\right]\right\}\\ =2y-x-\left\{2x-y-y-3x+5y-x\right\}\\ =2y-x-2x+y+y+3x-5y+x\\ =-y+x=-\left(a^2-2ab+b^2\right)+\left(a^2+2ab+b^2\right)\\ =-a^2+2ab-b^2+a^2+2ab+b^2=4ab\)