Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn \(\left(B\right)\left\{\frac{50}{273}k|k\inℤ,k\ne0\right\}\) (vì \(\frac{50}{273}\) là phân số tối giản sau khi rút gọn phân số \(\frac{100}{546}\)).
Lật ngược lại:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)
\(\Rightarrow x=y=z\left(ez-see!\right)\)
\(\Rightarrow x-z=0\)
A+2016/B+2016=A/B+2016/2016=A/B+1
=)A/B<A/B+1
=)A/B<A+2016/B+2016
0 m, n 0;
= k0
mnk = n(m+k)
mk = m+k
m(k-1)=k
m 0 k 2
TH1: k = 2 m = 2 (chọn)
TH2: k 3 m = không nguyên (loại)
m = 2
k = 2
n nguyên dương tùy ý 0
Sửa lại này, lúc nãy mình gõ trong Word rồi copy ra nên mất 1 số ký tự.
m/n khác 0 -> m; n khác 0
m/n = (m+k)/nk -> k khác 0
->mnk=n(m+k)
mk = m+k
m(k-1)=k
m khác 0 -> k lớn hơn hoặc bằng 2
Trường hợp 1: k=2 -> m=2 (chọn)
Trường hợp 2: k lớn hơn 2 -> m=k/(k-1) không nguyên (loại)
-> m=2; k=2; n nguyên dương tùy ý khác 0
áp dụng t/c dãy tỉ số = nhau ta đc
\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)
=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)
+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)
\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)
từ (1) zà (2)
=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\).
Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
1. 2n-3 ⋮ n+1
⇒2n+2-5 ⋮ n+1
⇒2(n+1)-5 ⋮ n+1
Do n∈Z
⇒n+1 ∈ Ư(-5)={-1,1,-5,5}
⇒\(\left[{}\begin{matrix}n-1=-1\\n-1=1\\n-1=-5\\n-1=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=2\\n=-4\\n=6\end{matrix}\right.\)
Vậy x∈{0,2,-4,6}
2. Ta có:
x-y-z=0 ⇒\(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)
Thay vào biểu thức ta được:
\(B=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)
⇒\(B=\frac{x-x+y}{x}.\frac{y-y-z}{y}.\frac{z+x-z}{z}\)
⇒\(B=\frac{y.\left(-z\right).x}{x.y.z}=\frac{\left(-1\right)xyz}{xyz}=-1\)
Vậy biểu thức B có giá trị là -1
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48