Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Bạn tự vẽ hình nha
a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB
<=> góc ABM = góc ACN (vì các góc kề bù với nhau)
Xét tam giác ABM và tam giác ACN
Có: AB = AC (CMT)
góc ABM = góc ACN (CMT)
BM = CN (gt)
<=> tam giác ABM = tam giác ACN (c.g.c)
<=> AM = AN ( 2 góc tương ứng)
<=> tam giác AMN cân tại A
b. Vì tam giác ABM = tam giác ACN (CMT)
<=> góc MAB = góc CAN ( 2 góc tương ứng)
Xét tam giác vuông AHB và tam giác vuông AKC
Có: AB= AC (CMT)
góc AHB= góc AKC= 90 độ
góc MAB = góc CAN (CMT)
<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)
P N M H K I Q
GT | △MNP cân tại P. MN = 6cm, NPI = MPI = NPM/2 , (I MN) IK ⊥ PM , IH ⊥ PN . IQ = IM |
KL | a, △MPI = △NPI b, HIP = PIK c, △MIQ vuông cân. MQ = ? d, Nếu PKH đều, điều kiện △MNP |
Bài làm:
a, Vì △MNP cân tại P => PN = PM
Xét △NPI và △MPI
Có: NP = MP (gt)
NPI = MPI (gt)
PI là cạnh chung
=> △NPI = △MPI (c.g.c)
b, Xét △HPI vuông tại H và △KPI vuông tại K
Có: PI là cạnh chung
HPI = KPI (gt)
=> △HPI = △KPI (ch-gn)
=> HIP = PIK (2 góc tương ứng)
Mà IP nằm giữa IH, IK
=> IP là phân giác KIH
c, Ta có: PIN = MIQ (2 góc đối đỉnh)
Mà PIN = 90o (gt)
=> MIQ = 90o (1)
Xét △MIQ có: IQ = IM => △MIQ cân tại I (2)
Từ (1), (2) => △MIQ vuông cân tại I
Vì △NPI = △MPI (cmt)
=> IN = IM (2 cạnh tương ứng)
Mà MN = IN + IM = 6 (cm)
=> IN = IM = 6 : 2 = 3 (cm)
Mà IM = IQ
=> IM = IQ = 3 (cm)
Xét △MIQ vuông tại I có: IQ2 + IM2 = MQ2 (định lý Pitago)
=> 32 + 32 = MQ2
=> 9 + 9 = MQ2
=> 18 = MQ2
=> MQ = \(\sqrt{18}=3\sqrt{2}\)
d, Để △PHK đều <=> HPK = PKH = KHP = 60o
=> △MNP có NPM = 60o mà △MNP cân
=> △MNP đều
Vậy để △PKH đều <=> △MNP đều
a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)
a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)a)Ta có:
△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^
1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^
Xét △NMA và △NPB có:
NM=NP (gt)
ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)
MA=PB (gt)
⇒ △NMA = △NPB (cgc)
⇒NA= NB (2 cạnh tương ứng)
⇒△NAB cân tại N
b)Từ △NMA = △NPB (câu a)
⇒ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^
Xét △HAM vuông tại H và △KBP vuông tại K có:
AM=BP (gt)
ˆHAM=ˆKBPHAM^=KBP^ (cmt)
⇒ △HAM = △KBP (cạnh huyền - góc nhọn)
⇒HM = KP (2 cạnh tương ứng)vv
câu a phải làm như này chứ
A. Xét tam giác NMA và tam giác NPB có:
NM=NP ( tam giác NMP cân)
MA=PB (gt)
Góc M= góc P (tam giác NMP cân )
=> tam giác NMA= tam giác NPB( c.g.c)
=> NA=NB( hai cạnh t.ứng)
=> tam giác NAB cân
a) Xét tam giác PQE và tam giác PRE ta có
PE là cạnh chung cũng là cạnh hóc vuông
PQ=PR ( do tam giác PQR là tam giác cân tại P)
Do đó Tam giác PQR=PRE ( ch - cgv)
suy ra: EQ=ER( do 2 cạnh tương ứng )
b) Ta có tam giác PQR=PRE ( chứng minh câu a )
Từ đó suy ra: QE=ER ( do 2 cạnh tương ứng )
Mà:
ME=MQ+QE
EN=RN+ER
Ta lại có MQ=RN và QE=ER
Từ đó ta có ME=EN
xét 2 tam giác vuông: tam giác PEM và tam giác PEN ta có
PE cạnh chung
PEM =PEN =90*
ME=EN ( chứng minh trên )
Do đó tam giác PEM=PEN ( c-g-c)
Suy ra: góc M= góc N ( Do 2 góc tuong ứng )
Vậy yam giác PMN là tam giác cân tại P ( do góc M=góc N)
Câu c) có sai đề ko bạn
câu D mình đang làm
Lm xog câu d) gửi cho mik nhé