Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A
\(BC=\sqrt{AB+AC}=\sqrt{3^2+4^2}=5\) (đ/l py - ta - go )
A/d hệ thức lượng, ta có
\(AB^2=BC.BH\)Hay \(9=5.BC\)
=> BC = 1,8
=> CH = 3,2
\(AH=\sqrt{BH.CH}=\sqrt{1,8.3,2}=2,4\)
Mà \(AM=\frac{BC}{2}\)( Do AM là trung tuyến )
Nên => AM = 2,5
Xét tam giác AHM vuông tại H ( AH là đường cao )
\(HM=\sqrt{AM^2-AH^2}=\sqrt{2,5^2-2,4^2}=0,7\)
Vậy .....
Áp dụng định lý Pytago trong tam giác vuông: ABC :
Áp dụng hệ thức lượng trong tam giác vuông ABC:
M là trung điểm củaBC
Vậy HM = BM – BH = 7 10 (cm)
Đáp án cần chọn là: A
BH = 18 cm ; MH = 7 cm ; MC = 25 cm ; AH = 24 cm. Chỉ có đáp án thôi nha!
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:
+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có:
+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:
+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có:
+) Diện tích tam giác ABC với AH là đường cao ta có:
Vậy AB = 5cm, AC = 15 4 cm; AM = 25 8 cm; S ∆ A B C = 75 8 c m 2 .
Đáp án cần chọn là: A
a) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
AH^2=BH.HCAH2=BH.HC\Leftrightarrow HC=\dfrac{AH^2}{HB}=2,25cm⇔HC=HBAH2=2,25cm.
BC=BH+HC=4+2,25=6,25cmBC=BH+HC=4+2,25=6,25cm.
AM=\dfrac{BC}{2}=3,125cmAM=2BC=3,125cm.
b) Áp dụng định lý Pi-ta-go ta có:
AB=\sqrt{AH^2+BH^2}=5cmAB=AH2+BH2=5cm.
AC=\sqrt{BC^2-AB^2}=\sqrt{6,25^2-5^2}=3,75cmAC=BC2−AB2=6,252−52=3,75cm.
Theo tính chất tia phân giác của một góc:\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{3,75}=\dfrac{4}{3}DCBD=ACAB=3,755=34.
Gọi E, F là chân đường vuông góc hạ từ D xuống AC và AB. Ta thấy ngay FDEA là hình vuông nội tiếp tam giác vuông ABC.
Từ đó ta có \dfrac{DE}{AB}=\dfrac{DC}{BC}=\dfrac{3}{7}\Rightarrow DE=\dfrac{3}{7}.5=\dfrac{15}{7}\left(cm\right)ABDE=BCDC=73⇒DE=73.5=715(cm)
\Rightarrow AD=\dfrac{15\sqrt{2}}{7}\left(cm\right)⇒AD=7152(cm).
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A tính BC=5cm.
Theo hệ thức lượng trong tam giác vuông ABC tính AH=2,4cm.
AM là trung tuyến tam giác ABC vuông tại A nên AM=BC/2=5/2=2,5cm.
Áp dụng định lýPy-ta-go vào tam giác AHM vuông tại H tính HM=0,7cm