K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

\(HB:HC=2:3\Rightarrow\dfrac{HB}{2}=\dfrac{HC}{3}\Rightarrow HB=\dfrac{2}{3}HC\)

Áp dụng HTL:

\(AH^2=BH\cdot HC\Rightarrow24^2=\dfrac{2}{3}HC^2\Rightarrow HC^2=576\cdot\dfrac{3}{2}=864\\ \Rightarrow HC=12\sqrt{6}\left(cm\right)\\ \Rightarrow HB=\dfrac{2}{3}\cdot12\sqrt{6}=8\sqrt{6}\left(cm\right)\\ \Rightarrow BC=HB+HC=20\sqrt{6}\left(cm\right)\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot24\cdot20\sqrt{6}=240\sqrt{6}\left(cm^2\right)\)

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Lời giải:
 Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$14^2=a.4a$

$4a^2=196$

$a^2=49\Rightarrow a=7$ (do $a>0$)

Khi đó:

$BH=a=7$ (cm); $CH=4a=28$ (cm)

$BC=BH+CH=7+28=35$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)

Chu vi tam giác $ABC$:

$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Hình vẽ:

24 tháng 7 2023

\(\dfrac{HB}{HC}=\dfrac{2}{5}\\ \Rightarrow HB=\dfrac{2}{5}HC\)

Xét tam giác ABC vuông tại A
\(AH^2=BH.CH\\ \Rightarrow16^2=\dfrac{2}{5}HC.HC\\ \Rightarrow HC^2=640\\ \Rightarrow HC=8\sqrt{10}\)

\(\Rightarrow HB=\dfrac{2}{5}.8\sqrt{10}=\dfrac{16\sqrt{10}}{5}\)

\(BC=HC+HB=8\sqrt{10}+\dfrac{16\sqrt{10}}{5}=\dfrac{56\sqrt{10}}{5}\)

\(AB^2=BH.BC\\ \Rightarrow AB=\sqrt{\dfrac{16\sqrt{10}}{5}.\dfrac{56\sqrt{10}}{5}}=\dfrac{16\sqrt{35}}{5}\)

\(AC^2=CH.BC\\ \Rightarrow AC=\sqrt{8\sqrt{10}.\dfrac{56\sqrt{10}}{5}}=8\sqrt{14}\)

Chu vi : \(AB+AC+BC==8\sqrt{14}+\dfrac{56\sqrt{10}}{5}+\dfrac{16\sqrt{35}}{5}=84,28\)

24 tháng 7 2023

\(\dfrac{HB}{HC}=\dfrac{2}{5}\Rightarrow\dfrac{HB}{2}=\dfrac{HC}{5}=\dfrac{HB.HC}{2.5}=\dfrac{AH^2}{10}=\dfrac{256}{10}=\dfrac{128}{5}\)

\(\Rightarrow HB=\dfrac{128}{5}.2=\dfrac{256}{5}\left(cm\right);HC=\dfrac{128}{5}.5=128\left(cm\right)\)

\(\Rightarrow BC=HB+HC=\dfrac{256}{5}+128=\dfrac{896}{5}\left(cm\right)\)

\(AC^2=AH^2+HC^2=256+\left(\dfrac{256}{2}\right)^2=256\left(1+\dfrac{256}{4}\right)\Rightarrow AC=16\sqrt[]{1+\dfrac{256}{4}}=16\sqrt[]{\dfrac{260}{4}}=16.\dfrac{1}{2}.2\sqrt[]{65}=16\sqrt[]{65}\left(cm\right)\)

\(AB^2=AH^2+BH^2=256+\left(\dfrac{256}{5}\right)^2=256\left(1+\dfrac{256}{25}\right)\Rightarrow AB=16\sqrt[]{1+\dfrac{256}{25}}=\dfrac{16}{5}\sqrt[]{281}\left(cm\right)\)

Chu vi tam giác ABC là : \(AB+AC+BC\)

\(=\dfrac{16}{5}\sqrt[]{281}+16\sqrt[]{65}+\dfrac{896}{5}\)

\(=16\left(\dfrac{1}{5}\sqrt[]{281}+\sqrt[]{65}+\dfrac{56}{5}\right)\)

\(=16\left(\sqrt[]{65}+\dfrac{56+\sqrt[]{281}}{5}\right)\left(cm\right)\)

AB/AC=4/3

=>HB/HC=16/9

=>HB/16=HC/9=k

=>HB=16k; HC=9k

AH^2=HB*HC

=>144k^2=24^2=576

=>k=2

=>HB=32cm; HC=18cm

AB=căn 32*50=40cm

AC=căn 18*50=30cm

23 tháng 6 2021

tham khảo của đỗ chí dũng câu hỏi của chi khánh

20 tháng 8 2021

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow4HB=HC\)

Xét tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\)( hệ thức lượng trong tam vuông)

\(\Rightarrow14^2=HB.4HB\Rightarrow HB=7\left(cm\right)\Rightarrow HC=4HB=28\left(cm\right)\Rightarrow BC=HB+HC=35\left(cm\right)\)Xem tam giác ABC vuông tại A có đường cao AH:

\(\left\{{}\begin{matrix}AB^2=HB.BC\\AC^2=HC.BC\end{matrix}\right.\)(Hệ thức lượng trong tam giác vuông)

\(\Rightarrow\left\{{}\begin{matrix}AB^2=7.35\\AC^2=28.35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\\AC=14\sqrt{5}\end{matrix}\right.\)

Ta có: \(P_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)

 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow4\cdot HB^2=14^2=196\)

\(\Leftrightarrow HB^2=49\)

\(\Leftrightarrow HB=7\left(cm\right)\)

\(\Leftrightarrow HC=28\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)

15 tháng 9 2016

A C H D 24 cm B

có:  HC . HB = AH2 = 576  trong tam giác vuông đường cao ứng với cạnh huyền bằng tích hình chiếu 2 cạnh góc vuông trên cạnh huyền) (1)

mà HC - HB = 14  => HC = 14 + HB

thay vào (1): HC . HB = (14 + HB) . HB = HB2 + 14HB  = 576  

=> HB2 + 14HB - 576 = 0  => (HB - 18) (HB + 32) = 0    => HB = 18 cm

=> HC = 14 + 18 = 32 cm    => BC = 18 + 32 = 50

=> AB2 = BH . BC = 18 . 50 = 900    => AB = 30  cm

=> AC2 = CH . BC = 32 . 50 = 1600  => AC = 40 cm

Có: BD/DC = AB/AC  => BD/AB = DC/AC  và BD + DC = 50

áp dụng tính chất dãy tỉ số bằng nhau đc:

\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+CD}{AB+AC}=\frac{50}{70}=\frac{5}{7}\)

  • => BD = 5 . AB = 5 . 30 : 7 = 150/7 cm

=> CD = 50 - 150/7 = 200/7 cm

=> HD = 50 - CD  - BH = 50 - 200/7 - 18 = 24/7 cm

xét tam giác vuông ADH: 

AD2 = AH+ DH2 = 242 + (24/7)2 

  • => AD = \(\sqrt{24^2+\left(\frac{24}{7}\right)^2}\approx24,244\)cm
15 tháng 9 2016

Ta có: HB.HC=AH^2=24^2=576. 
Biết được tích HB.HC là 576, hiệu HC-HB là 14(theo đầu bài)thì tính được BC=HB+HC 
(HC+HB)^2=(HC-HB)^2+4.HC.HB (cái này bạn khai triển ra là thấy)=14^2+4.576 =2500 
=> HC+HB=căn(2500)=50=>BC=50=>BD+DC=50( vì BD+DC=BC) 
HC+HB=50 mà HC-HB=14=> HC=32 và HB=18( tính hai số biết tổng và hiệu) 
Biết được tổng BD+DC, để tính được BD, ta đi tính tỉ số BD/DC: 
BD/DC=AB/AC ( vì AD là phân giác của tam giác ABC)=>BD=150/7 
=>HD=BD-HB=150/7-18=24/7. 
Áp dụng định lý py-ta-go vào tam giác vuông AHD ta có: 
AD^2=AH^2+HD^2=24^2+(24/7)^2=28800/49 
=>AD=căn(28800/49) sấp sỉ 24,244.